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INTRODUCTION

The main advantage of a Recursive Algorithm (an algorithm 
defined in terms of itself) is that it can be easily described 
and easily implemented in a programming language (van 
Breughel, 1997). On the other hand, the efficiency of such an 
algorithm is relatively low because for every recursive call 
not yet terminated, a number of data should be maintained 
in a stack, causing time delays and requiring higher memory 
space (Rohl, 1984). Solving the same problem iteratively 
instead of recursively can improve time and space efficiency. 
For example, to solve a problem that involves N recursive 
procedure calls, it will require stack space linear to N. On 
the contrary, using iteration, the program will need a constant 
amount of space, independent of the number of iterations. 
There are programming languages, such as Prolog, that 
do not possess built-in iterative structures and so recursion 
should be used instead. Nevertheless, there are ways to write 
recursive programs that have similar behaviour with that of 
the corresponding iterative programs. 

BACKGROUND

The transformation of recursion to iteration is not a new 
problem and it has been studied by various scientists, for 
example, De Moor and Sittampalam (2001) and Clinger 
(1998). This competition between recursion and iteration 
is interesting because they represent two different schools 
of thought in Computer Science. Various programming 
languages use recursion extensively, especially high-level 
programming languages that cope with Artificial Intelligence 
problems (Luger, 2002) such as Prolog (Bratko, 2000; Ra-
machandran, 1986), LISP (Lamkins, 2004; Seibel, 2005) or 
Scheme (Dybvig, 2004; Watson, 1996). The Prolog language 
will be used to exhibit the transformation of recursion to 
iteration (Clocksin & Mellish, 2003; Shoham, 1994). Prolog 
is a Logic Programming Language (Bramer, 2005) that 
uses heavily recursion. This happens because Prolog lacks 
iterative structures such as “for,” “while-do” or “repeat-
until” (Holmes, 2001; Langfield, 2003). In Prolog, a clause 
can be iterative even if it contains a recursive call. That is, a 
Prolog clause is iterative if it has zero or more calls to Pro-
log system predicates before the recursive call (Sterling & 

Shapiro, 1986). Furthermore, a Prolog procedure is iterative 
if it contains only unit clauses (facts) and iterative clauses. 
Having these in mind, we will try to transform recursion to 
iteration in Prolog, but that can apply to all other languages 
that use recursion. 

TRANSFORMING RECURSION TO 
ITERATION

The fact is that there is no easy or general way to transform 
a recursive algorithm to an iterative algorithm. What a 
programmer can do to increase the efficiency of a recursive 
algorithm is to implement the recursive algorithm in an it-
erative manner. This can be done by using special variables 
called accumulators that will be used to keep intermediate 
results and facilitate acceleration. 

To demonstrate the technique, the calculation of the sum 
of all integers from 1 to N will be used. The recursive rela-
tion that can be used to calculate the sum S of all positive 
integers from 1 to N is S(N)=S(N-1)+N. A Prolog predicate 
sum(N,S) that evaluates sum S of all integer numbers from 
1 to N, is the following:

sum(1,1).
sum(N,S):-N1 is N-1,
  sum(N1,S1),
  S is S1+N.

This is a recursive implementation because the second 
clause involves the call of the same predicate and after it, 
there is a Prolog system call (S is S1+N). To illustrate the 
computational effort of the above implementation, the trace 
of the call to find the sum of all integers from 1 to 4 is shown 
below (Figure 1).

In Figure 1, we see that after a series of recursive calls 
the call sum(1,S3) stops the recursion and initiates a series of 
value returns, until the initial call sum(4,S) is reached. The 
common process of recursion is now apparent where first 
the problem is getting smaller and smaller, until it meets the 
limit case. After that, values of intermediate call are returned 
until the initial call is answered. If we call the same predicate 
for an integer that is above a certain limit, the computer will 
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reach stack overflow because it cannot afford to provide 
memory space for all the recursive calls. 

We will try to implement the same algorithm in an 
iterative manner using predicate sum_iterative1(N,S). This 
will require the introduction of two new parameters. The 
first one will play the role of the counter of the iteration 
and the second will play the role of the accumulator. That 
is, the predicate sum_iterative1(N,S) will call an augmented 
predicate sum1(I,N,T,S) that has the two additional parameters. 
Counter “I” represents the I-th iteration and accumulator “T” 
the temporal sum until iteration I. Both the counter and the 
accumulator should be initiated with value 1. For this reason, 
the call of sum_iterative1(N,S) lead to the call of predicate 
sum1(1,N,1,S) that has the first and the third argument equal 
to 1. The complete code is given below.

sum_iterative1(N,S):- 
sum1(1,N,1,S).

sum1(I,N,T,S):-
 I<N,
 I1 is I+1,
 T1 is T+I1,
 sum1(I1,N,T1,S).
sum1(N,N,S,S).

Predicate sum1 is iterative because, as it is mentioned 
in the “Background” section, after the pseudo-“recursive” 
call at sum1(I1,N,T1,S), there is no other call. This kind of 
iteration is also called Tail Recursion. The introduction of 
the 2 parameters leads to the evaluation of the partial result 
of the sum at each step of the iteration and cause the termina-
tion of the iteration when counter I becomes equal to N. It is 
apparent that the recursion is transformed into an iteration 
of N steps. The iterative nature of the above implementation 
is illustrated in Figure 2, which shows the trace of the call 

to find the sum of all integers from 1 to 4.
Comparing this trace with that of Figure 1, we see that 

now the solution is found as soon as the call reaches the 
limit case at sum1(4,4,10,S). This means that the second 
stage of returning values and making calculations that is 
present in the trace of Figure 1 is now avoided, shortening 
the whole process.

The same problem can be solved iteratively even without 
having the counter I described above. In this case only one 
additional parameter, that of the accumulator, will be needed. 
The accumulator will store the partial result up to the cur-
rent step of iteration. The accumulator should be initiated 
with value 0; this is why the second argument of the call of 
predicate sum2(N,0,S)is zero. The code is given below:

sum_iterative2(N,S):-
sum2(N,0,S).

sum2(N,T,S):-
 N>0,
 T1 is T+N, 
 N1 is N-1,
 sum2(N1,T1,S).
sum2(0,S,S).

In this second implementation variable N also plays the 
role of the counter, because at every iteration step, its value 
decreases by one, terminating when its value becomes zero. 
Once again, the recursion is transformed into an iteration of 
N steps. This can be shown with the following trace of the 
call sum_iterative2(4,S).

The trace of Figure 3 is similar of that of Figure 2, that 
is, the second stage of returning values found in Figure 1, 
is omitted, and additionally, needs less memory space than 
the implementation traced at Figure 2, because only one 
additional parameter is added instead of two.

?-sum(4,S).
    → sum(3,S1)
      → sum(2,S2)
        → sum(1,S3)
        ← sum(1,1)
      ← sum(2,3)
    ←sum(3,6)
 sum(4,10)
S=10

Figure 1. The trace of the recursive implementation

?-sum_iterative1(4,S).
  → sum1(1,4,1,S)
    → sum1(2,4,3,S)
       → sum1(3,4,6,S)
          → sum1(4,4,10,S)
S=10

Figure 2. Trace of the iterative implementation, involving two 
additional parameters, one accumulator and one counter
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