
3784 Category: Software & Systems Design

INTRODUCTION

The main advantage of a Recursive Algorithm (an algorithm
defined in terms of itself) is that it can be easily described
and easily implemented in a programming language (van
Breughel, 1997). On the other hand, the efficiency of such an
algorithm is relatively low because for every recursive call
not yet terminated, a number of data should be maintained
in a stack, causing time delays and requiring higher memory
space (Rohl, 1984). Solving the same problem iteratively
instead of recursively can improve time and space efficiency.
For example, to solve a problem that involves N recursive
procedure calls, it will require stack space linear to N. On
the contrary, using iteration, the program will need a constant
amount of space, independent of the number of iterations.
There are programming languages, such as Prolog, that
do not possess built-in iterative structures and so recursion
should be used instead. Nevertheless, there are ways to write
recursive programs that have similar behaviour with that of
the corresponding iterative programs.

BACKGROUND

The transformation of recursion to iteration is not a new
problem and it has been studied by various scientists, for
example, De Moor and Sittampalam (2001) and Clinger
(1998). This competition between recursion and iteration
is interesting because they represent two different schools
of thought in Computer Science. Various programming
languages use recursion extensively, especially high-level
programming languages that cope with Artificial Intelligence
problems (Luger, 2002) such as Prolog (Bratko, 2000; Ra-
machandran, 1986), LISP (Lamkins, 2004; Seibel, 2005) or
Scheme (Dybvig, 2004; Watson, 1996). The Prolog language
will be used to exhibit the transformation of recursion to
iteration (Clocksin & Mellish, 2003; Shoham, 1994). Prolog
is a Logic Programming Language (Bramer, 2005) that
uses heavily recursion. This happens because Prolog lacks
iterative structures such as “for,” “while-do” or “repeat-
until” (Holmes, 2001; Langfield, 2003). In Prolog, a clause
can be iterative even if it contains a recursive call. That is, a
Prolog clause is iterative if it has zero or more calls to Pro-
log system predicates before the recursive call (Sterling &

Shapiro, 1986). Furthermore, a Prolog procedure is iterative
if it contains only unit clauses (facts) and iterative clauses.
Having these in mind, we will try to transform recursion to
iteration in Prolog, but that can apply to all other languages
that use recursion.

TRANSFORMING RECURSION TO
ITERATION

The fact is that there is no easy or general way to transform
a recursive algorithm to an iterative algorithm. What a
programmer can do to increase the efficiency of a recursive
algorithm is to implement the recursive algorithm in an it-
erative manner. This can be done by using special variables
called accumulators that will be used to keep intermediate
results and facilitate acceleration.

To demonstrate the technique, the calculation of the sum
of all integers from 1 to N will be used. The recursive rela-
tion that can be used to calculate the sum S of all positive
integers from 1 to N is S(N)=S(N-1)+N. A Prolog predicate
sum(N,S) that evaluates sum S of all integer numbers from
1 to N, is the following:

sum(1,1).
sum(N,S):-N1 is N-1,
 sum(N1,S1),
 S is S1+N.

This is a recursive implementation because the second
clause involves the call of the same predicate and after it,
there is a Prolog system call (S is S1+N). To illustrate the
computational effort of the above implementation, the trace
of the call to find the sum of all integers from 1 to 4 is shown
below (Figure 1).

In Figure 1, we see that after a series of recursive calls
the call sum(1,S3) stops the recursion and initiates a series of
value returns, until the initial call sum(4,S) is reached. The
common process of recursion is now apparent where first
the problem is getting smaller and smaller, until it meets the
limit case. After that, values of intermediate call are returned
until the initial call is answered. If we call the same predicate
for an integer that is above a certain limit, the computer will

Transforming Recursion to Iteration in
Programming
Athanasios Tsadiras
Technological Educational Institute of Thessaloniki, Greece

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 3785

Transforming Recursion to Iteration in Programming

T

reach stack overflow because it cannot afford to provide
memory space for all the recursive calls.

We will try to implement the same algorithm in an
iterative manner using predicate sum_iterative1(N,S). This
will require the introduction of two new parameters. The
first one will play the role of the counter of the iteration
and the second will play the role of the accumulator. That
is, the predicate sum_iterative1(N,S) will call an augmented
predicate sum1(I,N,T,S) that has the two additional parameters.
Counter “I” represents the I-th iteration and accumulator “T”
the temporal sum until iteration I. Both the counter and the
accumulator should be initiated with value 1. For this reason,
the call of sum_iterative1(N,S) lead to the call of predicate
sum1(1,N,1,S) that has the first and the third argument equal
to 1. The complete code is given below.

sum_iterative1(N,S):-
sum1(1,N,1,S).

sum1(I,N,T,S):-
 I<N,
 I1 is I+1,
 T1 is T+I1,
 sum1(I1,N,T1,S).
sum1(N,N,S,S).

Predicate sum1 is iterative because, as it is mentioned
in the “Background” section, after the pseudo-“recursive”
call at sum1(I1,N,T1,S), there is no other call. This kind of
iteration is also called Tail Recursion. The introduction of
the 2 parameters leads to the evaluation of the partial result
of the sum at each step of the iteration and cause the termina-
tion of the iteration when counter I becomes equal to N. It is
apparent that the recursion is transformed into an iteration
of N steps. The iterative nature of the above implementation
is illustrated in Figure 2, which shows the trace of the call

to find the sum of all integers from 1 to 4.
Comparing this trace with that of Figure 1, we see that

now the solution is found as soon as the call reaches the
limit case at sum1(4,4,10,S). This means that the second
stage of returning values and making calculations that is
present in the trace of Figure 1 is now avoided, shortening
the whole process.

The same problem can be solved iteratively even without
having the counter I described above. In this case only one
additional parameter, that of the accumulator, will be needed.
The accumulator will store the partial result up to the cur-
rent step of iteration. The accumulator should be initiated
with value 0; this is why the second argument of the call of
predicate sum2(N,0,S)is zero. The code is given below:

sum_iterative2(N,S):-
sum2(N,0,S).

sum2(N,T,S):-
 N>0,
 T1 is T+N,
 N1 is N-1,
 sum2(N1,T1,S).
sum2(0,S,S).

In this second implementation variable N also plays the
role of the counter, because at every iteration step, its value
decreases by one, terminating when its value becomes zero.
Once again, the recursion is transformed into an iteration of
N steps. This can be shown with the following trace of the
call sum_iterative2(4,S).

The trace of Figure 3 is similar of that of Figure 2, that
is, the second stage of returning values found in Figure 1,
is omitted, and additionally, needs less memory space than
the implementation traced at Figure 2, because only one
additional parameter is added instead of two.

?-sum(4,S).
 → sum(3,S1)
 → sum(2,S2)
 → sum(1,S3)
 ← sum(1,1)
 ← sum(2,3)
 ←sum(3,6)
 sum(4,10)
S=10

Figure 1. The trace of the recursive implementation

?-sum_iterative1(4,S).
 → sum1(1,4,1,S)
 → sum1(2,4,3,S)
 → sum1(3,4,6,S)
 → sum1(4,4,10,S)
S=10

Figure 2. Trace of the iterative implementation, involving two
additional parameters, one accumulator and one counter

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/transforming-recursion-iteration-programming/14141

Related Content

Management Information System in Higher Education
Juha Kettunen (2009). Encyclopedia of Information Communication Technology (pp. 542-547).

www.irma-international.org/chapter/management-information-system-higher-education/13403

eInsurance Project: How to Develop Novel Electronic Services with Co-operation between

Academics and Practitioners
Raija Järvinen, Jarno Salonen, Aki Ahonenand Jouni Kivistö-Rahnasto (2010). Journal of Cases on Information

Technology (pp. 35-49).

www.irma-international.org/article/einsurance-project-develop-novel-electronic/49195

Competing in the Marketplace: Incorporating Online Education into Higher Education
Deirdre A. Folkers (2007). Emerging Information Resources Management and Technologies (pp. 67-88).

www.irma-international.org/chapter/competing-marketplace-incorporating-online-education/10095

Critical Success Factors for IT Projects
Daniel M. Brandon (2006). Project Management for Modern Information Systems (pp. 18-28).

www.irma-international.org/chapter/critical-success-factors-projects/28176

On Bias-Variance Analysis for Probabilistic Logic Models
Huma Lodhi (2008). Journal of Information Technology Research (pp. 27-40).

www.irma-international.org/article/bias-variance-analysis-probabilistic-logic/3702

http://www.igi-global.com/chapter/transforming-recursion-iteration-programming/14141
http://www.igi-global.com/chapter/transforming-recursion-iteration-programming/14141
http://www.irma-international.org/chapter/management-information-system-higher-education/13403
http://www.irma-international.org/article/einsurance-project-develop-novel-electronic/49195
http://www.irma-international.org/chapter/competing-marketplace-incorporating-online-education/10095
http://www.irma-international.org/chapter/critical-success-factors-projects/28176
http://www.irma-international.org/article/bias-variance-analysis-probabilistic-logic/3702

