
S

3525 Category: Software & Systems Design

Software and Systems Engineering Integration
Rick Gibson
American University, USA

IntroductIon

With software an increasingly significant component of
most products, it is vital that teams of software and systems
engineers collaborate effectively to build cost effective,
reliable products. This article will identify the key aspects
of software engineering and systems engineering in an ef-
fort to highlight areas of consensus and conflict to support
current efforts by practitioners and academics in the both
disciplines in redefining and integrating their professions
and bodies of knowledge.

 In response to increasing concerns about software
development failures, the Software Engineering Institute
(SEI) pioneered a software process improvement model in
1988, with the fully developed version of their Capability

Maturity Model for Software (SW- CMMâ) appearing in
1993. Since the early nineties, there have been comparable
improvement models introduced in the systems engineering
community as well, some of which have been published
and widely accepted include: Systems Engineering Ca-
pability Maturity Model (SE-CMM), also known as the
Electronic Industries Alliance Interim Standard (EIA/IS)
731, Systems Engineering Capability Model (SECM), and
the Integrated Product Development Capability Maturity
Model (IPD-CMM). The resulting avalanche of models and
standards has been described by Sarah Sheard (Software
Productivity Consortium) as a “Framework Quagmire”. In
December of 2000, the SEI initiated the Capability Matu-
rity Model–Integrated (CMMISM) project, which combines
best practices from the systems and software engineering

Table1. Software and system engineering similarities and differences

Similarities Differences
Definition and analysis involves manipulation
of symbols.

Software is not subject to physical wear or
fatigue.

Highly complex aggregation of functions,
requiring satisfying (though not optimizing)
multiple criteria.

Copies of software are less subject to
imperfections or variations.

Decisions driven by need to satisfy quality
attributes such as reliability, safety, security,
and maintainability.

Software is not constrained by the laws of
physics.

Easy and dangerous to suboptimize solutions
around individual subsystem functions or
quality attributes.

Software interfaces are conceptual, rather than
physical—making them more difficult to
visualize.

Increasing levels of complexity and
interdependency.

Relative to hardware, software testing involves
a larger number of distinct logic paths and
entities to check.

 Unlike hardware, software errors arrive
without notice or a period of graceful
degradation.

 Hardware repair restores a system to its
previous condition; repair of a software fault
generally does not.

 Hardware engineering involves tooling,
manufacturing, and longer lead times, while
software involves rapid prototyping and fewer
repeatable processes.

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Software and Systems Engineering Integration

3526

disciplines. (Note: CMMâ and CMMISM are copyrights and
service marks of the Software Engineering Institute.)

 Recent studies (Carter et al., 2003; Goldenson & Gib-
son, 2003) have validated the SEI’s assertion the each of
the disciplines benefit from incorporation of principles from
the other. Moreover, there appears to be no fundamental
differences between the disciplines that would prevent their
integration.

Background

There is great hope that the SEI imitative will provide
the impetus to overcome some long-standing discipline
boundaries. The nature of the systems and software en-
gineering work has led to terminology differences rooted
in the very descriptions of the disciplines. One important
problem with software is the difficulty in understanding
its inherent level of quality.

 Issues and concerns regarding such an integration
were articulated by Barry Boehm and Fred Brooks as early
as 1975. Boehm suggested that the adoption of systems
engineering reliability techniques by software engineers
was counterproductive. Moreover, Brooks’ Law suggests
that a common systems engineering solution to schedule
slippage (add more people) will only make late software
projects even later.

 More recently, Boehm (1994) expressed concerns
that, in spite of the central function of software in modern
systems, the two engineering disciplines have not been well
integrated. Boehm articulated similarities and differences
as shown in Table 1.

Software engineering, as defined by the Institute of
Electrical and Electronics Engineers (IEEE, 2001), is: (1)
the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance
of software; that is, that application of engineering to soft-
ware; (2) The study of approaches as in (1)—and further
identifies the body of knowledge for software engineering
to be: software requirements, software design, software
construction, software testing, software maintenance,
software configuration management, software engineer-
ing management, software engineering process, software
engineering tools and methods, and software quality.

A useful definition of systems engineering resides
in an in-process body of knowledge document by the
International Council on Systems Engineers (Leibrandt,

2001, p. 3), which defines systems engineering in terms
of product and process: “…product oriented engineering
discipline whose responsibility is to create and execute
an interdisciplinary process to ensure that customer and
stakeholder needs are satisfied in a high quality, trustworthy,
cost effective and schedule compliant manner throughout
a system’s lifecycle”. The process starts with customer
needs, and consists of stating the problem, investigating
alternatives, modeling, integrating, launching the system,
and assessing performance. Moreover, the system engineer
is responsible for pulling together all the disciplines to cre-
ate a project team to meet customers’ needs. The complete
systems engineering process includes performance, testing,
manufacturing, cost, schedule, training and support, and
disposal. The body of knowledge recognizes that systems
engineering processes often appear to overlap software and
hardware development processes and project management.
Thus, systems engineering is a discipline that focuses on
processes; it develops structure, and efficient approaches to
analysis and design to solve complex engineering problems.
In response to concerns about integrated development of
products, the system engineer plans and organizes technical
projects and analyzes requirements, problems, alternatives,
solutions and risks. Systems engineering processes are not
specific to a particular discipline; they can be applied in
any technical or engineering environment.

In short, software engineering is defined by IEEE Stan-
dard 610.12 as the application of a systematic, disciplined,
quantifiable approach to the development, operation, and
maintenance of software—that is, the application of engi-
neering to software. Eisner (2002) adopts the International
Council on Systems Engineering (INCOSE) definition of
systems engineering as an interdisciplinary approach and
means to enable the realization of successful systems.

When different process models are in place within de-
veloper groups, say for systems engineering and software
engineering of an organization, the organizations will have
communication problems, be unable to improve their pro-
cesses, and if the combined performance of one advances
beyond the other in capability, then the problems are even
more profound (Johnson, 1998).

In 2002, the SEI released a single integrated capability
model for systems engineering and software engineering,
integrated product and process development and supplier
sourcing. The new model, Capability Maturity Model
Integrated (CMMI), is intended to improve organizations’
development and maintenance of products. The CMMI will
eventually replace the SEI’s Software Capability Maturity

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/software-systems-engineering-integration/14099

Related Content

Cultural Diversity in Collaborative Learning Systems
Yingqin Zhongand John Lim (2009). Encyclopedia of Information Science and Technology, Second Edition (pp.

852-857).

www.irma-international.org/chapter/cultural-diversity-collaborative-learning-systems/13676

Supporting the Evaluation of Intelligent Sources
Dirk Vriens (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 2690-2695).

www.irma-international.org/chapter/supporting-evaluation-intelligent-sources/14677

International Digital Studies Approach for Examining International Online Interactions
Kirk St. Amant (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 2159-2163).

www.irma-international.org/chapter/international-digital-studies-approach-examining/13878

Understanding Decision-Making in Data Warehousing and Related Decision Support Systems: An

Explanatory Study of a Customer Relationship Management Application
John D. Wellsand Traci J. Hess (2002). Information Resources Management Journal (pp. 16-32).

www.irma-international.org/article/understanding-decision-making-data-warehousing/1228

New Advancements in Image Segmentation for CBIR
Yu-Jin Zhang (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 2105-2109).

www.irma-international.org/chapter/new-advancements-image-segmentation-cbir/14568

http://www.igi-global.com/chapter/software-systems-engineering-integration/14099
http://www.igi-global.com/chapter/software-systems-engineering-integration/14099
http://www.irma-international.org/chapter/cultural-diversity-collaborative-learning-systems/13676
http://www.irma-international.org/chapter/supporting-evaluation-intelligent-sources/14677
http://www.irma-international.org/chapter/international-digital-studies-approach-examining/13878
http://www.irma-international.org/article/understanding-decision-making-data-warehousing/1228
http://www.irma-international.org/chapter/new-advancements-image-segmentation-cbir/14568

