
3152 Category: Software & Systems Design

Prolonging the Aging of Software Systems
Constantinos Constantinides
Concordia University, Canada

Venera Arnaoudova
Concordia University, Canada

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

IntroductIon

The evolution of programming paradigms and languages
allows us to manage the increasing complexity of systems.
Furthermore, we have introduced (and demanded) increas-
ingly complex requirements because various paradigms
provide mechanisms to support their implementation. As a
result, complex requirements constitute a driving factor for
the evolution of languages which in turn can support system
complexity. In this circular relationship, the maintenance
phase of the software life cycle becomes increasingly impor-
tant and factors which affect maintenance become vital.

In this chapter we review the notions of software aging
and discuss activities undertaken during maintenance. We
also discuss challenges and trends for the development of
well-maintained systems as well as for aiding in the main-
tenance of legacy systems.

Background

aging in Software

In the literature, many authors tend to have drawn analogies
between software systems and biological systems (ISO/IEC
12207:1995(E); Jones, 2007; Parnas, 1994). Two such notable
examples are the widely used notions of aging and software
life cycle, implying that we can view software systems as a
category of organisms. This analogy is convenient because
it creates certain realizations about software. First, we note
that systems exist (by operating as a community of intercom-
municating agents) inside a given environment. Furthermore,
much like their biological counterparts, they evolve (to adapt
to their environment) and they grow old. Finally, when
speaking of the life cycle of software, we also imply the
unavoidable fact that software systems eventually die.

However, the causes of software aging are very different
from those of biological organisms or those that cause aging
in other engineering artifacts. Unlike biological organisms
(such as humans) software systems are not subjected to fatigue
or physical deterioration. Unlike other engineering products
(such as machinery and structures), software systems are not
subjected to physical wear caused by factors such as friction
and climate. Aging in software systems is predominantly

(but not always) caused by changes that take place in their
surrounding (operating) environment.

In his seminal paper on aging, author David Parnas
(1994) describes two causes of software aging: The first
factor, referred to as lack of movement, is the failure of
owners to provide modifications to the software in order
to meet changing needs (requirements) of its environment
which results in end-users changing to newer products. The
second factor, referred to as ignorant surgery, is the careless
introduction of changes in the implementation which can
cause the implementation to become inconsistent with the
design, or even to introduce new bugs. This latter factor is
associated with two significant implications: The first is a
bloating of the implementation, resulting in a reduction in
performance (memory demands, throughput and response
time). This weight gain makes new changes difficult to be
introduced quickly enough to meet market demands. The
second implication is a phenomenon known as bad fix injec-
tion (Jones, 2007), which refers to the introduction of errors
during maintenance resulting in a decrease in reliability. As
a result, software systems become unable to be competitive
in the market, thus loosing customers to newer products.

Measures to Prolong aging

Certain measures are proposed in the literature (Parnas,
1994) to prolong aging such as:

1. The quality of documentation can be upgraded
(retroactive documentation). For example, reverse
engineering is a model transformation activity which
can read implementation and produce an up-to-date
design model.

2. Since we cannot really predict the actual changes,
predictions can be made about the types of changes,
such as changes to the graphical user interface. Par-
nas (1994) recommends re-organizing the software
in such a way so that elements which are most likely
to change, such as the user interface, are confined to
small amounts of code (retroactive modularization).
A similar view is shared by Fayad and Altman (2001)
through an architectural pattern to support software
stability where the architecture is built around two
notions, conceptualized as two concentric circles. In

 3153

Prolonging the Aging of Software Systems

P
the inner circle, we have aspects of the environment
that will not change. These aspects will constitute a
stable core design (and thus a stable software product).
In the outer circle, or periphery, we define a design
which will allow changes to be introduced.

3. Eliminate components which are of very low quality
(amputation).

4. Eliminate redundant components (major surgery).

These measures take place during the period of oper-
ability of a software system and are explicitly treated as a
separate phase of the software life cycle which is discussed
subsequently.

Software Maintenance

ISO/IEC and IEEE define maintenance as the modification
of a software product after delivery to correct faults, improve
performance (or other attributes) or to adapt the product to
a modified environment (ISO/IEC 14764:2006(E); IEEE
Std 14764-2006). The importance of maintenance lies on
the following observations: (1) Surveys indicate that it is an
activity which tends to consume a significant proportion of
the resources utilized in the overall life cycle (consequently
consuming a large part of the costs) and (2) Reliable changes
to software tend to be time consuming. Prolonged delays
during software change may result in a loss of business
opportunities.

The objective of maintenance is not to stop the unavoid-
able effects of aging, but to provide techniques and tools to
understand its causes, to limit its effects and to prolong the
life of software systems.

Maintenance is not a uniform activity and as the type of
required changes may vary, four different types of mainte-
nance can be identified which are also defined in the ISO/
IEC; IEEE international standard. Corrective maintenance
includes all changes made to a system after deployment
to correct problems. Preventive maintenance includes all
changes made to a system after deployment to correct faults
in order to prevent failures. Adaptive maintenance includes
all changes made to a system after deployment to address new
requirements. Perfective maintenance includes all changes
made to a system after deployment to support operability in
a different (software or hardware) environment. The ISO/
IEC; IEEE international standard provides a classification
scheme by grouping the former two under correction and
the latter two under enhancement. Adaptive and perfective
types of maintenance are shown in the literature to consume
a significantly large proportion of all maintenance effort.
Corrective and preventive types of maintenance are reported
to consume a relatively small proportion of the overall main-
tenance effort. It is important to note, that the different types
are not mutually exclusive but rather they can be combined
concurrently to be mutually supportive.

Also, the four maintenance types do not refer to single
activities. Jones (2007) lists 23 discrete topics which involve
a modification of an existing system often described under
maintenance.

Stages of Maintenance and the Staged
Model of the Software Life cycle

In the literature, Bennett and Rajlich (2000) define a model
whereby a software system undergoes distinctive stages
during its life: Initial development, evolution, servicing,
phase-out, and closedown.

Initial development would produce a deployable system
(the first operating version). After deployment, evolution
would extend the capabilities of the system, possibly in major
ways. Once evolution is no longer viable, the software would
enter the servicing stage (often referred to as maturity, or
most commonly legacy stage). As the term suggests, only
small changes are possible during this stage.

Maintainers often encounter what Bennett (1995)
describes as the legacy dilemma: On one hand, a system
(or component) is valuable and replacing it may not be a
viable (cost effective) solution (e.g., large volumes of data
may have to be converted). On the other hand, the cost of
maintenance is becoming high and requests for changes
cannot be sustained. When faced with legacy systems,
organizations have to adopt a strategy which is based on
economics (i.e., cost of coping with the current system vs.
the cost of investment of improvement) and management
(e.g., a replacement system would normally require training
of end-users). Table 1 summarizes various options based
on two factors, namely business value and quality (adopted
from Sommerville, 2007).

Finally, once servicing is no longer viable the system
enters a phase-out stage where deficiencies are known but
not addressed. At closedown, the system is withdrawn
from the market. In an alternative model (versioned staged
model), during evolution a version is publicly released and
subsequently enters the servicing stage whereas the system
continues to evolve in order to produce the next version.

Central to any maintenance activity is the notion of
change, discussed in the next subsection.

SoFtWarE cHangE

Whether new requirements are introduced or existing re-
quirements are refined or dropped, the notion of change is
a fundamental activity during evolution and servicing. Ben-
nett and Rajlich (2000) describe a change mini-cycle as one
which involves a number of activities: request for change,
planning phase, change implementation, verification, and
documentation update.

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/prolonging-aging-software-systems/14041

Related Content

Utilizing the Internet of Things in the Public Sector
Mai Al-Sebaeand Emad Ahmed Abu-Shanab (2022). Journal of Information Technology Research (pp. 1-20).

www.irma-international.org/article/utilizing-the-internet-of-things-in-the-public-sector/299915

Enterprise Resource Planning and Integration
Karl Kurbel (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 1075-1082).

www.irma-international.org/chapter/enterprise-resource-planning-integration/14389

Logistics, Information Technology, and Retail Internationalisation: The Formation of International

Strategic Retail Networks
Constatine A. Bourlakisand Michael A. Bourlakis (2003). IT-Based Management: Challenges and Solutions

(pp. 257-276).

www.irma-international.org/chapter/logistics-information-technology-retail-internationalisation/24801

E-Mail Usage in South Pacific Distance Education
Jonathan Frank, Janet Tolandand Karen D. Schenk (2005). Encyclopedia of Information Science and

Technology, First Edition (pp. 1034-1039).

www.irma-international.org/chapter/mail-usage-south-pacific-distance/14382

Service-Oriented Architecture Adoption: A Normative Decision Model for Timing and Approach
Andrew P. Ciganekand Marc N. Haines (2010). International Journal of Information Technology Project

Management (pp. 1-15).

www.irma-international.org/article/service-oriented-architecture-adoption/42122

http://www.igi-global.com/chapter/prolonging-aging-software-systems/14041
http://www.igi-global.com/chapter/prolonging-aging-software-systems/14041
http://www.irma-international.org/article/utilizing-the-internet-of-things-in-the-public-sector/299915
http://www.irma-international.org/chapter/enterprise-resource-planning-integration/14389
http://www.irma-international.org/chapter/logistics-information-technology-retail-internationalisation/24801
http://www.irma-international.org/chapter/mail-usage-south-pacific-distance/14382
http://www.irma-international.org/article/service-oriented-architecture-adoption/42122

