
3147

P

Category: Software & Systems Design

IntroductIon

Prolog is a logic based programming language, and was
developed in the early 1970s and is a practical programming
language particularly useful for knowledge representation
and artificial intelligence (AI) applications. Prolog is differ-
ent from many common computer languages in that it is not
a procedural language (such as Basic, C, or Java). It is an
interpreted logic based declarative language and as such has
no loops, jumps, type declarations or arrays, and no fixed
control constructs. In the past this has led to the impression
that Prolog is a restricted language, useful only for highly
specialized programming tasks by enthusiasts (Callear, 1994;
Krzysztof, 1997). However, this is not the case and modern
versions of Prolog are well equipped and versatile, and can
be used for any programming task. The latest generations
of the language (e.g., Visual Prolog) can also be integrated
into more common object oriented languages.

Background

origins

The development and growth in the use of prolog has followed
the expansion of interest in artificial intelligence and knowl-
edge based/expert systems. These are computer systems that
simulate human cognitive processes, and incorporate large
volumes of information in a database using rules to attempt to
encapsulate this information as knowledge (or the knowledge
of a human expert in the case of expert systems).

Prolog was developed by Alain Colmerauer of Mar-
seilles University, and Robert Kowalski of the University
of Edinburgh, in the early 1970s as an alternative to the
American Lisp programming languages (early mathemati-
cal notation based languages), and Planner (a procedural
language representing “knowledge” in the form of high level
procedural plans). Kowalski, was a primary advocate in the
logic paradigm community (see Fundamental Ideas), and in
collaboration with Alain Colmerauer they created a subset of
the language “micro planner” called Prolog, Kowalski hoped
to demonstrate with Prolog that the logic paradigm was a
viable approach to programming. It was Philippe Roussel
(also at Marseilles University) who came up with the name
as an abbreviation for “PROgrammation en LOGique” to
refer to this software tool which was originally devised as
a man-machine interface using natural language.

Fundamental Ideas

Prolog is a declarative language in that all the facts and data
relating to the subject domain are stored and statically declared
in a Prolog database. Rules are created that draw out the
information from the database as necessary. Problem solving
is achieved from the perspective of the data rather than the
procedure, and this can be highly efficient (Bratko, 1996). We
can contrast this with the conventional procedural paradigm
where the computer performs a sequence of instructions or
procedures to resolve a problem. Prolog does not specify any
data types in its structure in the way common programming
languages do. It therefore has a very open data structure and
does not distinguish integers from real numbers, for example.
Prolog has two basic functional components. Firstly, a query
interpreter program that searches the second component, a
Prolog database of facts and rules. The database or program
is normally in the form of a text file.

The Logic Paradigm

John McCarthy (1958) originally proposed that mathemati-
cal logic be used for representing the nature of knowledge
in computer systems. Marvin Minsky and Seymour Papert
developed a different approach based on procedural imple-
mentations at MIT where the program simply contains a
series of computational steps to be carried out to reach a
goal (Hewitt, 2006). The logic programming paradigm
developed as an alternative to the procedural paradigm and
incorporates the invocation of procedures from inferential
and deductive processes. Many people were involved in the
endeavor of deriving a computer programming language
from the discipline of logic, notably Robert Kowalski at
Edinburgh University.

Unlike most procedural languages, Prolog programs are
not written in a way that models how a computer works, but
incorporate techniques that reflect the logical principals of
problem solving. In Prolog rather than describing how to
compute a solution, the program consists of a data base of
facts (or defined predicates about something) and logical
relationships (rules) which describe the relationships which
hold between those facts. Rather then running a program
based on a set of procedures to find a solution to a problem,
the logic paradigm makes the user ask a question. A run-
time system then searches through a database of facts and
rules using logical deduction to determine the answer to this

PROLOG
Bernie Garrett
University of British Columbia, Canada

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

3148

PROLOG

question, and then invocates a predetermined procedure as
a result.

In reality Prolog is not a full implementation of logic
programming as this would be purely declarative. It is more
accurate to say that Prolog is a programming language based
on logic as its implementation has distinct procedural aspects,
such as backtracking (Hewitt & Agha, 1988). However, this is
a useful aspect of the language as it makes it straightforward
to write conventional computer programs in Prolog.

Backward and Forward Chaining

There are two main methods of reasoning when using infer-
ence rules in computer applications. These are forward and
backward chaining. Forward chaining starts with the available
data and uses inference rules to extract more data until a goal
is reached. In backward chaining, the system starts with a
list of goals and works backwards to see if there are data
available that will support any of these goals. An inference
engine using backward chaining searches all the inference
rules until it finds one which has a then clause that matches
a desired goal. If the if clause of that rule is not known to
be true, then it is added to a list of goals to be searched for
and the search continues until all the goals are met (or fail
to be met). Backward chaining attempts to match the action
rather than the conditions during its operation, and works
from goals to facts. It eliminates the need to solve every
possible outcome for a given set of rules. Forward chaining
inference is often called data driven in contrast to backward
chaining inference, which is referred to as goal driven reason-
ing. Prolog is based on mathematical logic, and the basis for
this claim is that Prolog uses backward chaining processes
in its operation from goal to sub-goal.

This process can be represented by the following code
in Prolog:

goalX :- subgoal1, ..., subgoaln.

This states that in order to prove goalX, then you must
prove subgoal1 through to subgoaln.

Unification

Unification is the built-in pattern-matching algorithm in
Prolog, and one of the main concepts in behind it (Sterling
& Shapiro, 1994). It is the mechanism by which variables
are bound (or instantiated) to unique assignments. In Prolog,
this operation is denoted by the equal symbol (=).

Queries in Prolog work by pattern matching. The query
pattern is the goal, and if a fact in the Prolog database matches
this goal, then the query succeeds and Prolog responds with
‘yes.’ If there is no matching fact, then the query fails and
Prolog responds with ‘no.’

Example:
In the following example Prolog unifies the variable “what”
with the atom (a constant string of characters) “trees.”

?- climbs(bear,What).
What=trees.
Prolog responds: yes

Prolog uses a capital letter to indicate a variable and a
lowercase letter to indicate an atom. In older versions of
Prolog a variable which is has not been instantiated yet can
be unified with any atom, term, or another uninstantiated
variable. In more modern versions a variable cannot be
unified with a term that contains it. Binding a variable to
a structure containing that variable can results in a cyclic
structure which would cause the unification to loop forever.
For example, A=f(A). This is a type of recursion. Modern
versions of Prolog include an “occurs check” to prevent
this happening.

Backtracking
In Prolog backtracking is a process that allows it to work
through all the sub-goals in a rule if one sub-goal fails. In
this case Prolog does not give up immediately and make the
rule fail but it backtracks to previous sub-goals to try other
instances of them in the database, then move forward again
and see whether this causes the failed sub-goal to succeed.
In this way it goes through a process that tries all the pos-
sible combinations of solutions, and finds the successful
ones, before it finally reports that a rule has failed (Coehlo
& Cotta, 1988).

In order to cope with the very limited memory systems
and sequential computer architecture that were available
when the language was developed, an efficient backtracking
control structure was implemented so that only one possible
computational path had to be stored at a time. This backtrack-
ing process is a method that has to be used on a sequential
computer, which can only do one thing at a time and has
to work through all the possibilities systematically. As it
searches, Prolog leaves markers at points in the database
to which it returns if a path down a particular branch fails
to yield a resulting match. This exhaustive search method
used by Prolog is called a depth first search method (Nils-
son & Maluszynski, 1995). Diagram 1 demonstrates how
this works in practice. The tree shows possible solutions
for a supervision rule. Prolog finds “major(lewis)” first and
then explores all possibilities of the “corporal” predicate
before moving on to “major(lee).” It then explores all the
possibilities of “corporal” again going as deep down the
branches as possible.

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/prolog/14040

Related Content

Cyber-Identity Theft and Fintech Services: Technology Threat Avoidance Perspective
Kwame Okwabi Asante-Offeiand Winfred Yaokumah (2021). Journal of Information Technology Research (pp.

1-19).

www.irma-international.org/article/cyber-identity-theft-and-fintech-services/279031

Technology and Work in the Virtual Organization
Paul M. Leonardi (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 2753-2656).

www.irma-international.org/chapter/technology-work-virtual-organization/14687

Beyond Your Sight Using Metaverse Immersive Vision With Technology Behaviour Model
 Poh Soon JosephNg, Xiaoxue Gong, Narinderjit Singh, Toong Hai Sam, Hua Liuand Koo Yuen Phan (2023).

Journal of Cases on Information Technology (pp. 1-34).

www.irma-international.org/article/beyond-your-sight-using-metaverse-immersive-vision-with-technology-behaviour-

model/321657

Determinant of Information Quality and Use of Executive Information Systems (EIS) in UK
Omar E.M. Khaliland Manal M. Elkordy (2007). Emerging Information Resources Management and

Technologies (pp. 89-122).

www.irma-international.org/chapter/determinant-information-quality-use-executive/10096

Improving English Teaching Strategies From the Perspective of College Students' Mental Health
Xinhui Zhang (2024). Journal of Cases on Information Technology (pp. 1-18).

www.irma-international.org/article/improving-english-teaching-strategies-from-the-perspective-of-college-students-mental-

health/342090

http://www.igi-global.com/chapter/prolog/14040
http://www.igi-global.com/chapter/prolog/14040
http://www.irma-international.org/article/cyber-identity-theft-and-fintech-services/279031
http://www.irma-international.org/chapter/technology-work-virtual-organization/14687
http://www.irma-international.org/article/beyond-your-sight-using-metaverse-immersive-vision-with-technology-behaviour-model/321657
http://www.irma-international.org/article/beyond-your-sight-using-metaverse-immersive-vision-with-technology-behaviour-model/321657
http://www.irma-international.org/chapter/determinant-information-quality-use-executive/10096
http://www.irma-international.org/article/improving-english-teaching-strategies-from-the-perspective-of-college-students-mental-health/342090
http://www.irma-international.org/article/improving-english-teaching-strategies-from-the-perspective-of-college-students-mental-health/342090

