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IntroductIon

In particular in technical contexts, information systems and 
analysing techniques help a lot for gathering data and making 
information available. Regarding dynamic behavioral sys-
tems like athletes or teams in sports, however, the situation is 
difficult: data from training and competition do not give much 
information about current and future performance without 
an appropriate model of interaction and adaptation. 

Physiologic adaptation is one major aspect of target-
oriented behavior, in physical training as well as in mental 
learning. In a simplified way it can be described by a stimu-
lus-response-model, where external stimuli change situation 
or status of an organism and so cause activities in order to 
adapt. This aspect can appear in quite different dimensions 
like individual biochemical adaptation that needs only mil-
liseconds up to selection of the fittest of a species, which 
can last millions of years. 

Well-known examples can be taken from learning 
processes or other mental work as well as from sport and 
exercising. Most of those examples are characterized by a 
phenomenon that we call antagonism: The input stimulus 
causes two contradicting responses, which control each 
other and – by balancing out – finally enable to reach a 
given target. For example, the move of a limb is controlled 
by antagonistic groups of muscles, and the result of a game 
is controlled by the efforts of competing teams. 

In order to understand and eventually improve such 
adaptation, models are necessary that make the processes 
transparent and help for simulating dynamics like for exam-
ple, the increase of heart rate as an reaction of speeding up 
in jogging. With such models it becomes possible not only 
to analyze past processes but also to predict and schedule 
indented future ones. 

In the Background section, main aspects of modeling 
antagonistic adaptation systems are briefly discussed, which 
is followed by a more detailed description of the developed 
PerPot-model and a number of examples of application in 
the Main Focus section. 

Background

Undisturbed limited growth processes in biological systems 
often are asymptotic, oriented in specific target values. This 

behavior reflects adaptation to limited resources and delays 
caused by resource production and transport. Processes of this 
type theoretically can be modeled rather easily by means of 
exponential functions – for example, f(t) = c – exp(-s × t/d), 
where c is the target value, s characterizes the deceleration, 
and d characterizes the delay (see Banister & Calvert, 1980; 
Banister, Calvert, Savage & Bach, 1975). In practice, how-
ever, situations are more complex (see Lames, 1996; Viru 
& Viru, 1993): The growth process normally is disturbed 
(stopped, restarted, reduced, intensified) by external effects; 
capacity limitations cause changes of the temporary process 
type (phase changes); buffers cause delays of the internal 
dynamics; seemingly constant parameters turn out to be 
time-depending. Therefore, often such processes cannot be 
modeled using continuous functions (e.g., as solutions of 
differential equations) but have to be calculated iteratively 
using discrete level-rate-equations, which only piecewise 
could be approximated by exponential functions.

Physiologic adaptation is a kind of limited biological 
growth and therefore can be modeled and simulated using 
such an iterative approach – as we have successfully done 
with load-performance-interaction and learning in sport. To 
this aim we developed an approach (PerPot: Performance 
Potential Metamodel, see Mester & Perl, 2000; Perl, 2002; 
Perl & Mester, 2001), the central idea of which is that of 
antagonism: A load input flow feeds in the same way two 
internal buffers – the strain potential and the response 
potential. These buffers are connected with a performance 
potential, the level of which is decreased by a negative strain 
flow and increased by a positive response flow. Both flows 
are delayed. The relations between the strain delay and the 
response delay characterize the interaction of load input and 
performance output. In case of training or learning the strain 
delay can be interpreted as fatigue delay, while response 
delay stands for the delay of recovery. 

MaIn FocuS oF tHE cHaPtEr

Applying such a model to a test person, after a short phase of 
calibration the delay parameters are known and the behavior 
of the test person can be analysed and simulated using Per-
Pot. This approach has successfully been used for detecting 
striking features like contra-productive overtraining, doping 
abuse, or threatening collapses as results of overload. PerPot 
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can predict performance output depending on training or 
learning input and so can be used for scheduling optimal 
training or learning processes. 

the PerPot concept

The metamodel PerPot describes physiologic adaptation on 
an abstract level as an antagonistic process, as is shown in 
Figure 1. An input flow (which usually is called “load” rate) 
is feeding identically a strain potential as well as a response 
potential. From the response potential the performance 
potential is increased by a positive flow, while the strain 
potential reduces it by a negative flow. Additionally, there 
are the following two effects: 

If the strain potential is filled over its upper limit, it 
produces an overflow, which acts on the performance 
potential as a reducing negative flow. In turn, the differ-
ence between the upper limit of the strain potential and its 
current level indicates how far the situation is from such a 
dangerous overflow. This difference is called the “reserve” 
of the system.   

Finally, in order to model atrophy, the performance 
potential continuously looses substance. By mathematical 
reasons, this loss has to be fed back to the response potential to 
preserve the potential balance of the system (see Perl, 2003). 
(From the mathematical point of view, the load rate only 
plays the role of a pump, which moves the system potential 
around without violating this balance property.)

All flows show specific delays modelling the time that 
components need to react. Possible physiologic interpreta-
tions are production and transport of biochemical stuff 
on the micro-level or fatigue and recovery effects on the 
macrolevel. 

Delays are model parameters the model behavior depends 
on in a quite characteristic way. For instance, the fitness of 
an athlete can be measured by the correlation of fatigue and 
recovery delays.

PerPot-Based Simulation and analysis

Based on the model, a simulation tool has been developed, 
which in an iterative way calculates the model’s behavior 
in order to follow individual and temporary profiles of load 
and delays. Basic simulations and analyses can be run using 
the PerPot-tool by just varying delay parameters and load 
profiles. As is shown in Figure 2, there are mainly three 
types of characteristic behavior, which normally are mixed 
up to a complex behavioral profile: 

In the left graphic, the normal adaptation is shown, de-
pending on the relation between the delays DR and DS: If DS 
is less than DR then the performance reducing strain comes 
faster then the performance increasing response, therefore 
causing the well-known super-compensation effect (see 
Clijsen, van de Linden, Welbergen & Boer, 1988; Friedrich 
& Moeller, 1999). In turn, if DS is greater than DR, the re-
sponse effect comes first, causing increasing performance, 
which later is balanced out with increasing strain.

The graphic in the middle demonstrates how a switch on 
of load starts the performance development (like in the left 
graphic) and a switch off causes a characteristic decrease 
of development, which is a combination of recovery and 
atrophy. 

The right graphic shows the effect of overload, which 
causes internal load overflow with collapsing reserve and 
performance (see Hartmann & Mester, 2000). 
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Figure 1. PerPot: Structure and parameters
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