
2078 Category: Software & Systems Design

Integrating Domain Analysis into Formal

Laura Felice
Universidad Nacional del Centro de la Pcia. de Buenos Aires, Argentina

Daniel Riesco
Universidad Nacional de San Luis, Argentina

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Reusability is widely suggested as a key to improve software
development productivity. It has been further argued that reuse

of development. The development of a particular system that
exploits previously accumulated domain knowledge can be
the source for new insights about the domain that adds to or

similar problems. This work deals with the integration of a
reusability model into a formal method in order to enhance

Working with formal methods, software reuse problems such
as the detection of inconsistencies in component integration
can be revealed in early stages of development.

The rigorous approach to industrial software engineering
(RAISE) (George et al., 1995) formal method was originally
designed to be applied at different levels of abstraction as
well as stages of software development. It includes several

property-based, applicative or imperative, sequential or
concurrent. However, it is not easy to identify reusable

method tend not to be reusable in other applications as they

RAISE supports object-orientation, the major approaches to

scenario-based analysis) can not provide support for reus-
ability and adaptability of applications without analyzing the
commonality and variability among a family of applications
in a domain (Lee, Kang, Chae, & Choi, 2000).

To address this problem, there have been methods for
reuse whose development has been based on the notion of
“domain orientation” (Barstow, 1985; Prieto-Diaz, 1987),
which emphasizes a group of closely related applications
in a domain rather than a single application. The exploita-
tion of commonality across related software systems is a
fundamental technical requirement to achieve successful
software reuse. Software product lines (PL) (Kang, Kim,
Lee, & Kim, 2003) present a solid approach in large scale
reuse. Due to the PL’s inherit complexity, many PL methods

use the notion of “features” to support domain modeling
(e.g., FODA) (Kang et al., 1990), FORM (Kang, Kim, Lee,
& Kim, 1998), FeatuRSEB (Griss, Allen, & d´Alessandro,
1998). These methods identify common abstractions across
the applications of a domain in order to engineer reusable
domain components. Feature modeling mainly focuses on
identifying commonalities and variabilities among products
of a PL, and organizing them in terms of structural relation-

dependencies (e.g., required and excluded).
This work is related to the introduction of a feature-

-
tions and to give a solution to “bridge” the gap between the

Felice, Debnath, & Montejano, 2005). In particular, FORM
method (feature-oriented reuse method) is introduced in order
to gradually improve the reuse of RSL (George et al., 2002)

of software reusability as an integral part of the software

• To create a plan of reuse as part of the project plan
• To add steps to look for and evaluate reusable com-

ponent candidates to use in the project
• To add guidelines to create a future component for

reuse

practice of reuse in the project

which have the potential for reuse in the future

BACKGROUND

PL engineering is an emerging software engineering para-
digm, which guides organizations toward the development
of products from core assets rather than the development of
products one by one from scratch. Two major activities of PL
are core asset development (i.e., product line engineering)
and product development (i.e., product engineering) using
the core assets. The paradigm of developing core assets for
application development has been called domain engineer-

 2079

Iand development of reusable assets from an application
“domain” perspective (Lee, Kwanwoo, Kang, & Lee, 2002).
The purpose of domain engineering is to develop domain
artifacts that may be used and reused in development ap-
plications for a given domain. DE consists of activities for
gathering and representing information on systems that share
a common set of capabilities and data. In usual approaches to
software reuse, the product of such domain engineering might
include only the reusable components and their parametric
representations applicable to that domain.

DE, the key to systematic software reuse, has two phases:
domain analysis (DA) and domain implementation.

DA is the process of discovering and recording the com-
monalities and variabilities in a set of software systems,
while domain implementation is the use of the information
from DA to create reusable assets and new systems within
a domain (Frakes, 1994).

The view of DA follows the line of thought pioneered
in Neighbors’ DRACO system (Neighbors, 1980), where
the importance of DA in reusability was pointed out. This
is summarized as “to identify objects and operations for a
class of similar systems.”

DA is a process that affects the maintainability, usability,
and reusability of a system and includes:

• Domain analysis
• The development of a domain architecture

documentation)

-
requisite for successful reuse not only by the researchers in
the reuse community but also by the methodologists who
have introduced component-based development methods
(D’Souza & Wills, 1999; Gamma, Helm, Johnsson, &
Wlissides, 1995; Jacobson, Booch, & Rumbaugh, 1999).
A review of some domain analysis methods is presented in
Kang (1990) and an extensive domain analysis bibliography
can be found in Hess et. al. (1990).

The result of the analysis, usually known as the domain
model, is retrieved for reuse in future developments or similar
systems and also, for maintainability of legacy systems.

In a reuse strategy, DA must be maintained over many
systems, and the repository should contain domain models
that form the basis of subsequent development activities.

DA is essential to formalize reuse. However, it is miss-
ing from most software development methods. Reuse en-
gineering extends information engineering by adding the
new stage “domain analysis” to provide a place in the life
cycle where the most valuable reusable components for the

containing these components can be created. At this stage
of the software development, working with formal methods

provide a means of unambiguously stating the requirements
of a system, or of a system component. In this way, formally

combined to form components of the new system.
Nevertheless, the main problem is that the requirements

may not be clear. Specially, when the requirements are written
in a natural language the result is likely to be ambiguous. The

in a precise way applying a reusability model.
In particular, there are two main activities in the RAISE

towards something that can be implemented in a program-
ming language (George et al., 2002). Writing the initial

-
ment. If it is wrong (i.e., if it fails to meet the requirements)
the following work will be largely wasted. It is well known
that mistakes made in the life cycle are considerably more

of a DA method is a crucial task considering the possibility

Examples of more relevant DA methods include FODA,
FORM, and FeatuRSEB. They support the notion of feature-
oriented. This is a concept based on the emphasis this method

expected in applications for a given domain. The FORM
engineering processes are illustrated in Figure 1.

THE FORM METHOD

FORM product line engineering consists of two major
processes: asset development and product development, as
it can be seen in Figure 1. Asset development consists of
analyzing a product line (domain analysis, feature modeling)
and developing architectures and reusable components based
on analysis results. Product development includes analyzing
requirements, selecting features, selecting and adopting an
architecture, and adapting components and generating code
for the product.

This method has been applied to several industry applica-
tion domains including elevator control systems, electronic
bulletin board systems yard automation systems and PBX,
to create product line software engineering environments
and software packages (Kang et al., 2003).

6 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/integrating-domain-analysis-into-formal/13865

Related Content

Business Alignment Methodology: The Discovery Phase
Marielba Zacariasand Paula Ventura Martins (2014). Information Resources Management Journal (pp. 1-20).

www.irma-international.org/article/business-alignment-methodology/109529

The Rise and Fall of a Dot-Com: Lessons Learned from LivingCo
Judy E. Scott (2004). Annals of Cases on Information Technology: Volume 6 (pp. 1-21).

www.irma-international.org/article/rise-fall-dot-com/44567

Information Systems and Small Business
M. Gordon Hunter (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 1994-

1997).

www.irma-international.org/chapter/information-systems-small-business/13851

End-User System Development: Lessons from a Case Study of IT Usage in an Engineering

Organization
Murray E. Jennex (2005). Journal of Cases on Information Technology (pp. 67-81).

www.irma-international.org/article/end-user-system-development/3148

Using Ontology and User Profile for Web Services Query
Jong Woo Jong Woo Kimand Balasubramaniam Ramesh (2009). Encyclopedia of Information Science and

Technology, Second Edition (pp. 3953-3959).

www.irma-international.org/chapter/using-ontology-user-profile-web/14167

http://www.igi-global.com/chapter/integrating-domain-analysis-into-formal/13865
http://www.igi-global.com/chapter/integrating-domain-analysis-into-formal/13865
http://www.irma-international.org/article/business-alignment-methodology/109529
http://www.irma-international.org/article/rise-fall-dot-com/44567
http://www.irma-international.org/chapter/information-systems-small-business/13851
http://www.irma-international.org/article/end-user-system-development/3148
http://www.irma-international.org/chapter/using-ontology-user-profile-web/14167

