Category: Software & Systems Design

1555

Formal Development of Reactive Agent-Based

Systems

P. Kefalas
CITY College, Greece

M. Holcombe
University of Sheffield, UK

G. Eleftherakis
CITY College, Greece

M. Gheorghe
University of Sheffield, UK

INTRODUCTION

Recent advances in both the testing and verification of soft-
ware based on formal specifications have reached a point
where the ideas can be applied ina powerful way in the design
of agent-based systems. The software engineering research
has highlighted anumber of important issues: the importance
of the type of modelling technique used; the careful design
of the model to enable powerful testing techniques to be
used; the automated verification of the behavioural proper-
ties of the system; and the need to provide a mechanism for
translating the formal models into executable software in a
simple and transparent way.

An agent is an encapsulated computer system that is
situated in some environment and that is capable of flexible,
autonomous action in that environment in order to meet its
design objectives (Jennings, 2000). There are two fundamen-
tal concepts associated with any dynamic or reactive system
(Holcombe & Ipate, 1998): the environment, which could be
precisely or ill-specified or even completely unknown and
the agent that will be responding to environmental changes
by changing its basic parameters and possibly affecting the
environmentas well. Agents, as highly dynamic systems, are
concerned with three essential factors: a set of appropriate
environmental stimuli or inputs, a set of internal states of the
agent, and a rule that relates the two above and determines
what the agent state will change to if a particular input ar-
rives while the agent is in a particular state.

One of the challenges that emerges in intelligent agent
engineering isto develop agent models and agent implemen-
tations that are “correct.” The criteria for “correctness” are
(Ipate & Holcombe, 1998): the initial agent model should
match the requirements, the agent model should satisfy any
necessary properties in order to meet its design objectives,
and the implementation should pass all tests constructed
using a complete functional test-generation method. All the

above criteria are closely related to stages of agent system
development, i.e., modelling, validation, verification, and
testing.

BACKGROUND: FORMAL METHODS
AND AGENT-BASED SYSTEMS

Although agent-oriented software engineering aims to man-
age the inherent complexity of software systems (Wooldridge
& Ciancarini, 2001; Jennings, 2001), there is stillno evidence
to suggest that any methodology proposed leads toward
“correct” systems. In the last few decades, there has been
strong debate on whether formal methods can achieve this
goal. Software system specification has centred on the use of
models of data types, either functional or relational models,
suchas Z (Spivey, 1989) or VDM (Jones, 1990), or axiomatic
ones, such as OBJ (Futatsugi et al., 1985). Although these
have led to some considerable advances in software design,
they lack the ability to express the dynamics of the system.
Also, transforming an implicit formal description into an ef-
fective working system is not straightforward. Other formal
methods, such as finite state machines (Wulf et al., 1981)
or Petri Nets (Reisig, 1985) capture the essential feature,
whichis “change,” but fail to describe the system completely,
because there is little or no reference to the internal data and
how these data are affected by each operation in the state
transition diagram. Other methods, like statecharts (Harel
1987), capture the requirements of dynamic behaviour and
modelling of data but are informal with respect to clarity
and semantics. So far, little attention has been paid in formal
methods that could facilitate all crucial stages of “correct”
system development, modelling, verification, and testing.
In agent-oriented engineering, there have been several
attempts to use formal methods, each one focusing on dif-
ferent aspects of agent systems development. One was to

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



formalise the PRS (procedural reasoning system), a variant
of the BDI architecture (Rao & Georgeff, 1995), with the
use of Z, in order to understand the architecture in a bet-
ter way, to be able to move to the implementation through
refinement of the specification, and to be able to develop
proof theories for the architecture (D’Inverno et al., 1998).
Trying to capture the dynamics of an agent system, Rosen-
schein and Kaebling (1995) viewed an agent as a situated
automaton that generates a mapping from inputs to outputs,
mediated by its internal state. Brazier etal. (1995) developed
the DESIRE framework, which focuses on the specification
of the dynamics of the reasoning and acting behaviour of
multiagent systems. In an attempt to verify whether proper-
ties of agent models are true, work has been done on model
checking of multiagent systems with reuse of existing tech-
nology and tools (Benerecetti et al., 1999, Rao & Georgeff,
1993). Toward implementation of agent systems, Attoui and
Hasbani (1997) focused on program generation of reactive
systems through a formal transformation process. A wider
approach is taken by Fisher and Wooldridge (1997), who
utilised Concurrent METATEM in order to formally specify
multiagent systems and then directly execute the specifica-
tion while verifying important temporal properties of the
system. Finally, in a less formal approach, extensions to
Unified Modelling Language (UML) to accommodate the
distinctive requirements of agents (AUML) were proposed
(Odell et al., 2000).

X-MACHINES FOR AGENT-BASED
SYSTEM DEVELOPMENT

An X-machine is a general computational machine (Eilen-
berg, 1974) that resembles a finite state machine but with

Figure 1. An X-machine that models an ant.

Formal Development of Reactive Agent-Based Systems

two significant differences: there is memory attached to
the machine, and the transitions are labeled with functions
that operate on inputs and memory values. The X-machine
formal method forms the basis for a specification language
with great potential value to software engineers, because
they can facilitate modelling of agents that demand remem-
bering as well as reactiveness. Figure 1 shows the model of
an ant-like agent that searches for food but also remembers
food positions in order to set up its next goals. Many other
biological processes seem to behave like agents, as, for ex-
ample, a colony of foraging bees, tissue cells, etc. (Kefalas
et al., 2003a; Gheorghe et al., 2001; Kefalas et al., 2003b).
Formally, the definition of the X-machine requires the
complete description of a set of inputs, outputs, and states;
a memory tuple with typed elements; a set of functions and
transitions; and finally, an initial state and a memory value
(Holcombe, 1988).

Having constructed amodel of an agent as an X-machine,
itis possible to apply existing model-checking techniques to
verify its properties. CTL* is extended with memory quanti-
fier operators: M_(for all memory instances) and m_(there
existmemory instances) (Eleftherakis & Kefalas, 2001). For
example, in the ant-like agent, model checking can verify
whether food will eventually be dropped in the nest by the
formula: AG[—M (m, # none) v EFM (m = none)], where
m, indicates the first element of the memory tuple.

Having ensured that the model is “correct,” we need to
also ensure thatthe implementation is “correct,” this time with
respect to the model. Holcombe and Ipate (1998) presented a
testing method that under certain design-for-test conditions
can provide a complete test-case set for the implementa-
tion. The testing process can be performed automatically
by checking whether the output sequences produced by the
implementation are identical to the ones expected from the
agent model through this test-case set.

M = (FOODE {none}) " (COORD

COORD) ~ seq (COORD ~ COORD)

Foraging

ignore food
Ant

move_to_food

find_nest

LOOKING
FOR FOOD

move_to_food mo

lift_food

got lost

A
C@VEST
GOING BACK
move_to_nest TO NEST )find_food

AT FOOD

®
A

stay_at_nest

move

m o
FREELY

4
drop

A
| food

move

nest

ve_to
lift food

1556



2 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage: www.igi-
global.com/chapter/formal-development-reactive-agent-based/13784

Related Content

Data Mining

Sherry Y. Chenand Xiaohui Liu (2009). Encyclopedia of Information Science and Technology, Second Edition
(pp. 921-926).

www.irma-international.org/chapter/data-mining/13685

Concepts and Dynamics of the Application Service Provider Industry
Dohoon Kim (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 681-685).
www.irma-international.org/chapter/concepts-dynamics-application-service-provider/13648

Design and Implementation of a Wide Area Network
Rohit Rampal (2002). Annals of Cases on Information Technology: Volume 4 (pp. 427-439).
www.irma-international.org/article/design-implementation-wide-area-network/44522

On the Study of Complexity in Information Systems

James Courtney, Yasmin Merali, David Paradiceand Eleanor Wynn (2009). Selected Readings on Information
Technology Management: Contemporary Issues (pp. 63-75).
www.irma-international.org/chapter/study-complexity-information-systems/28661

Are Risks in IT Global and Local Projects the Same?: Systematic Literature Review of the Last 20
Years

Rosaria de F. S. M. Russoand Franciane F. Silveira (2020). Novel Theories and Applications of Global
Information Resource Management (pp. 1-30).
www.irma-international.org/chapter/are-risks-in-it-global-and-local-projects-the-same/242264



http://www.igi-global.com/chapter/formal-development-reactive-agent-based/13784
http://www.igi-global.com/chapter/formal-development-reactive-agent-based/13784
http://www.irma-international.org/chapter/data-mining/13685
http://www.irma-international.org/chapter/concepts-dynamics-application-service-provider/13648
http://www.irma-international.org/article/design-implementation-wide-area-network/44522
http://www.irma-international.org/chapter/study-complexity-information-systems/28661
http://www.irma-international.org/chapter/are-risks-in-it-global-and-local-projects-the-same/242264

