Category: Software & Systems Design

1047

Design Patterns from Theory to Practice

Jing Dong
University of Texas at Dallas, USA

Tu Peng
University of Texas at Dallas, USA

Yongtao Sun
American Airlines, USA

Longji Tang
FedEx Dallas Tech Center, USA

Yajing Zhao
University of Texas at Dallas , USA

INTRODUCTION

Design patterns (Gamma, Helm, Johnson, & Vlissides, 1995)
extract good solutions to standard problems in a particular
context. Modern software industry has widely adopted
design patterns to reuse best practices and improve the
quality of software systems. Each design pattern describes
a generic piece of design that can be instantiated in different
applications. Multiple design patterns can be integrated to
solve different design problems. To precisely and unam-
biguously describe a design pattern, formal specification
methods are used. Each design pattern presents extensible
design that can evolve after the pattern is applied. While
design patterns have been applied in many large systems,
pattern-related information is generally not available in
source code or even the design model of a software system.
Recovering pattern-related information and visualizing it in
design diagrams can help to understand the original design
decisions and tradeoffs.

In this article, we concentrate on the issues related to
design pattern instantiation, integration, formalization,
evolution, visualization, and discovery. We also discuss the
research work addressing these issues.

BACKGROUND

Formalization

Design patterns are typically described informally for easy
understanding. However, there are several drawbacks to the
informal representation of design patterns. First, informal
specifications may be ambiguous and imprecise. They may
not be amendable to rigorous analysis. Second, formal

specifications of design patterns also form the basis for
the discovery of design patterns in large software systems.
Third, design patterns are generic designs that need to be
instantiated and perhaps integrated with other patterns when
they are applied in software system designs. There can be
errors and inconsistencies in the instantiation and integration
processes by using informal specifications. Finding such
errors or inconsistencies early at the design level is more
efficient and effective than doing it at the implementation
level. In addition, it is interesting to know whether some of
these processes are commutative at the design level (Dong,
Peng, & Qiu, 2007b).

The initial work on the formal specification of archi-
tecture and design patterns has been done in Alencar et
al. (Alencar, Cowan, & Lucena, 1996). The composition
of two design patterns based on a specification language
(DisCo) has been discussed in Mikkonen (1998). A formal
specification approach based on logics is presented in Eden
and Hirshfeld (2001). Some graphical notations are also
introduced to improve the readability of the specifications.
The structural and behavioral aspects of design patterns in
terms of responsibilities and rewards are formally specified
in Soundarajan and Hallstrom (2004). Taibi and Ngo (2003)
propose specifying the structural aspect of design patterns
in the first order logic (FOL) and the behavioral aspect in
the temporal logic of action (TLA). Formal specification of
design patterns and their composition based on the language
of temporal ordering specification (LOTOS) is proposed in
Saeki (2000).

Evolution

Change is a constant theme in software system development.
Mostdesign patterns describe some particular ways for future
changes and evolutions. In this way, the designers can add or

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.



remove certain design elements with minimal impact on other
parts of the system. However, such evolution information of
each design pattern is normally implicit in its descriptions.
When changes are needed, a designer has to read between
the lines of the document of a design pattern to figure out
the correct ways of changing the design. Misunderstanding
of a design pattern may also result in missing parts of the
evolution process. It might be a disaster if a change causes
any inconsistency, any violation of pattern constraints and
properties, and consequently, a system crash. It is impor-
tant to regularize, formalize, and automate the evolution of
design patterns.

Design pattern evolutions in software development pro-
cesses have been discussed in Kobayashi and Saeki (1999),
where software development process is considered as the
evolutions of analysis and design patterns. The evolution
rules are specified in Java-like operations to change the
structure of patterns. Noda (2001) consider design patterns
as a concern that is separated from the application core
concern. Thus, an application class may assume a role in a
design pattern by weaving the design pattern concern into the
application class using Hyper/J. Improving software system
quality by applying design patterns in existing systems has
been discussed in Cinnéide and Nixon (2001). When the user
selects a design pattern to be applied in a chosen location of
a system, automated application is supported by applying
transformations corresponding to the minipatterns.

Visualization

When a design pattern is applied in a large system design,
pattern-related information is normally lost because the
information on the role a model element plays in the pattern
is often not available. It is unclear which model elements,
suchas class, attribute, or operation, participate in the pattern.
There are several problems when design patterns are implicit
in software system designs. First, software developers can
only communicate at the class level instead of the pattern
level because they do not have pattern-related information in
system designs. Second, each pattern often documents some
ways for future evolutions, as discussed previously, that are
buried in the system design. The designers are not able to
change the design using relevant pattern-related informa-
tion. Third, each pattern may preserve some properties and
constraints. Itishard for the designers to check whether these
properties and constraints hold when the design is changed.
Fourth, it may require considerable efforts on reverse-engi-
neering design patterns from software systems.

Early work on explicitly visualizing design patterns in
UML has been investigated in Vlissides (1998), where all
approaches surveyed can only represent the role a class
plays in a pattern, not the roles of an attribute (or operation).
They cannot distinguish multi-instances of a pattern either.
Current approaches on visualizing design patterns can be

1048

Design Patterns from Theory to Practice

categorized into two kinds, UML-based approaches (France,
Kim, Ghosh, & Song, 2004; Lauder & Kent, 1998; Vlis-
sides, 1998) and non-UML-based approaches (Mapdlsden,
Hosking, & Grundy, 2002; Reiss, 2000). The UML-based
approaches can be further divided into single-diagram (Vlis-
sides, 1998) and multidiagram (France et al., 2004; Lauder
& Kent, 1998).

Discovery

Design document is often missing in many legacy systems.
Even the document is available; it may not exactly match
the source code that may be changed and migrated over
time. Missing pattern-related information may compromise
the benefits of using design patterns. The applications of
design patterns may vary in different layouts, which also
pose challenges for recovering and changing these design
pattern instances. It is important to effectively and efficiently
recover the design pattern from the source code.

Several approaches have been proposed to discover a
design pattern from either source code or design model
diagrams, such as the UML. A review of these approaches
has been presented in Dong (Dong, Zhao, & Peng, 2007d).
Among them, Antoniol (2004) uses the abstract object
language (AOL) as the intermediate representation for pat-
tern discovery. Tsantalis et al. (Tsantalis, Chatzigeorgiou,
Stephanides, & Halkidis, 2006) applies a graph matching
algorithm to calculate the similarity of two classes in pattern
and system. Machine learning algorithms, such as decision
tree and neural network, have been applied to classify the
potential pattern candidates in (Ferenc, Beszedes, Fulop, &
Lele, 2005, Gueheneuc, Sahraoui, & Zaidi, 2004).

FROM THEORY TO PRACTICE

In this section, we present our approaches on the formaliza-
tion, evolution, visualization, and discovery of design pat-
terns. In addition to the theory of our approaches, we provide
several tools for practical uses of our approaches.

Formalization

Over the past decade, we have applied several formal
methods, such as first-order logic, temporal logic of action
(TLA) (Lamport, 1994), Prolog, Calculus for Communicat-
ing System (CCS) (Milner, 1989), to specify design pat-
tern structure and behavior. More specifically, we applied
first-order logic to specify the structural aspect of a design
pattern and the TLA to specify the behavior of each design
pattern in Dong (Dong, Alencar, & Cowan, 2000). The
structural aspect is described by predicates for describing
classes, state variables, methods, and their relations. The



4 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage: www.igi-
global.com/chapter/design-patterns-theory-practice/13704

Related Content

Patients, Caregivers, and Telehome-Based Care Systems: A Case Study

Katerina G. Tsigrogianniand loannis A. Tarnanas (2007). Journal of Cases on Information Technology (pp. 71-

90).
www.irma-international.org/article/patients-caregivers-telehome-based-care/3207

Web Caching

Antonios Danalis (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 4058-
4063).

www.irma-international.org/chapter/web-caching/14185

Findings, Discussion, and Recommendations
(2018). Measuring the Validity of Usage Reports Provided by E-Book Vendors: Emerging Research and
Opportunities (pp. 97-108).

www.irma-international.org/chapter/findings-discussion-and-recommendations/190055

Indonesian Government Knowledge Management Model: A Theoretical Model
Dana Indra Sensuse, Wahyu Catur Wibowoand Elin Cahyaningsih (2016). Information Resources
Management Journal (pp. 91-108).

www.irma-international.org/article/indonesian-government-knowledge-management-model/143170

Digital Knowledge Management Artifacts and the Growing Digital Divide: A New Research Agenda
loannis Tarnanasand Vassilios Kikis (2009). Encyclopedia of Information Science and Technology, Second
Edition (pp. 1133-1141).

www.irma-international.org/chapter/digital-knowledge-management-artifacts-growing/13718



http://www.igi-global.com/chapter/design-patterns-theory-practice/13704
http://www.igi-global.com/chapter/design-patterns-theory-practice/13704
http://www.irma-international.org/article/patients-caregivers-telehome-based-care/3207
http://www.irma-international.org/chapter/web-caching/14185
http://www.irma-international.org/chapter/findings-discussion-and-recommendations/190055
http://www.irma-international.org/article/indonesian-government-knowledge-management-model/143170
http://www.irma-international.org/chapter/digital-knowledge-management-artifacts-growing/13718

