
 961

D

Category: Data Mining & Databases

IntroductIon

Integrity	 constraints	 (or	 simply	 “constraints”)	 are	 formal	
representations	of	invariant	conditions	for	the	semantic	cor-
rectness of database records. Constraints can be expressed
in	declarative	 languages	such	as	datalog,	predicate	 logic,	
or SQL. This article highlights the historical background
of	 integrity	constraints	 and	 the	essential	 features	of	 their	
simplified incremental evaluation. It concludes with an
outlook on future trends.

Background

Integrity	has	always	been	an	important	issue	for	database	
design	and	control,	as	attested	by	many	early	publications	
(e.g., Bernstein & Blaustein, 1982; Bernstein, Blaustein, &
Clarke, 1980; Codd, 1970, 1979; Eswaran & Chamberlin,
1975; Fraser, 1969; Hammer & McLeod, 1975; Hammer
& Sarin, 1978; Nicolas, 1978, 1982; Wilkes, 1972); later
ones are too numerous to mention. Expressing database
semantics	as	invariant	properties	persisting	across	updates	
had first been proposed by Minsky (1974). Florentin (1974)
suggested	expressing	integrity	constraints	as	predicate	logic	
statements. Stonebraker (1975) proposed formulating and
checking integrity constraints declaratively as SQL-like
queries.

Functional dependencies (Armstrong, 1974; Codd, 1970)
are a fundamental kind of constraints to guide database design.
Referential integrity has been part of the 1989 SQL ANSI and
ISO standards (McJones, 1997). The SQL2 standard (1992)
introduced	 the	 CHECK	 and	 ASSERTION constructs (i.e.,
table-bound and table-independent SQL query conditions)
as	the	most	general	means	to	express	integrity	constraints	
declaratively (Date & Darwen, 1997). Since the 1990s,
uniqueness	constraints,	foreign	keys,	and	complex	queries	
involving	EXISTS	 and	NOT became	common	 features	 in	
commercial databases. Thus, arbitrarily general and complex
integrity	constraints	can	now	be	expressed	and	evaluated	
in most relational databases. However, most of them offer
efficient support only for the following three simple kinds
of	declarative	constraints:

• Domain Constraints: Restrictions on the permissible
range	of	attribute	values	of	tuples	in	table	columns,	
including scalar SQL data types and subsets thereof,
as well as options for default and null values.

• Uniqueness Constraints: As enforced by the UNIQUE
construct	on	single	columns,	and	UNIQUE INDEX	and	
PRIMARY KEY	on	any	combination	of	one	or	several	
columns	in	a	table,	preventing	multiple	occurrences	
of values or combinations thereof.

• Foreign Key Constraints: For establishing a rela-
tionship	between	the	tuples	of	two	tables,	requiring	
identical column values. For instance, a foreign key
on	column	emp	of	relation works_in	requires	that	the	
emp	value	of	each	tuple	of	works_in	must	occur	in	
the	emp_id	column	of	 table	employee,	and	that	 the	
referenced	column	(emp_id	in	the	example)	has	been	
declared as primary key.

For more general constraints, SQL manuals usually
recommend	using	procedural	triggers	or	stored	procedures	
instead of declarative constructs. This is because such con-
straints may involve nested quantifications over huge extents
of several tables. Thus, their evaluation can easily become
prohibitively costly. However, declarativity does not need
to be sacrificed for efficiency, as shown by many methods
of simplified integrity checking as cited in this survey. They
are all based on the seminal paper (Nicolas, 1982).

sImplIfIed Incremental
IntegrIty cHeckIng

A common idea of all integrity checking methods is that not
all	constraints	need	to	be	evaluated,	but	at	most	those	that	
are	possibly	affected	by	the	incremental	change	caused	by	
database updates or transactions. Anticipating updates by
patterns,	most	incremental	integrity	checking	methods	allow	
for simplifications of constraints to be generated already at
schema compilation time. Such compiled simplifications
are	parametric	conditions	to	be	instantiated,	possibly	further	
optimized, and evaluated upon given update requests. For
generating	 them,	only	 the	database	 schema,	 the	 integrity	
constraints, and the update patterns are needed as input.

Database Integrity Checking
Hendrik Decker
Universidad Politécnica de Valencia, Spain

Davide Martinenghi
Free University of Bozen/Bolzano, Italy

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

962

Database Integrity Checking

Their	 evaluation,	 however,	 may	 involve	 access	 to	 the	
stored data at update time. Methods that generate compiled
simplifications are described, for example, by Christiansen
and Martinenghi (2006), Decker (1987), and Leuschel and
De Schreye (1998). For unanticipated ad-hoc updates, the
generation of simplifications takes place at update time. Op-
timizations for efficient evaluation of simplified constraints
are addressed, for example, by Sheu & Lee (1987).

Simplifications can be distinguished by the database state
in which they are evaluated. Post-test	methods	must	evaluate	
their simplifications in the new,	updated	state,	for	example,	
Decker and Celma (1994), Grant and Minker (1990), Lloyd,
Sonenberg, and Topor (1987), Nicolas (1982), and Sadri
and Kowalski (1988). Pre-test	 approaches,	 for	 example,	
Bry, Decker, and Manthey (1988), Christiansen and Mar-
tinenghi (2006), Hsu and Imielinski (1985), McCune and
Henschen (1989), and Qian (1988), only access the old	state	
before	the	update,	that	is,	they	need	not	execute	the	update	
prematurely,	since	undoing	an	updated	state	if	integrity	is	
violated is costly. In case of integrity violation, the eager-
ness	of	pre-tests	to	avoid	rollbacks	is	a	clear	performance	
advantage over post-tests.

For convenience, a finite set of constraints imposed
on	a	database	D	 is	called	an	 integrity theory	of	D. For a
database	D	and	an	 integrity	 theory	 IC,	 let	D(IC)	=	satis-
fied	denote	that	IC is satisfied in D,	and	D(IC)	=	violated	
that it is violated. Further, for an update U,	let	DU	denote	
the updated database. Any simplification method M	can	be	
formalized	as	a	function	that	takes	as	input	a	database,	an	
integrity	theory	and	an	update,	and	outputs	either	satisfied
or	violated. Thus, soundness and completeness of M	can	be	
stated	as	follows:	

Let D	be	any	database,	IC	any	integrity	theory,	and	U	any	
update. Suppose that D(IC)	=	satisfied. Then, an integrity
checking	method	M	is	sound	if	the	following	holds:

If	M(D,	IC,	U)	=	satisfied	then	DU(IC)	=	satisfied.

It	is	complete	if	the	following	holds:

If	DU(IC)	=	satisfied	then	M(D,	IC,	U)	=	satisfied.

This	 formalism	 is	applicable	 to	most	 integrity	check-
ing methods in the literature. Many of them are sound and
complete for significant classes of relational and deductive
databases, integrity theories, and updates. Some methods,
however,	are	only	shown	to	be	sound,	that	is,	they	provide	
sufficient conditions that guarantee integrity satisfaction of
DU, for example, Gupta, Sagiv, Ullman, and Widom (1994);
further	checking	is	required	if	these	conditions	are	not	satis-
fied. The main advantage is that the evaluation of M(D,	IC,	
U)	is	typically	much	simpler	than	that	of	DU(IC).

	 Most	integrity	checking	methods	can	be	described	by	
distinguishing	three	(possibly	interleaved)	phases,	namely	
the	generation,	optimization,	and	evaluation of simplified
tests. Next, these phases, numbered I, II, III, are illustrated
by an example.

eXample

Consider	a	relational	database	with	tables	for	workers	and	
managers, defined as follows:

CREATE TABLE(worker(CHAR name, CHAR department))

CREATE TABLE(manager (CHAR name)).

Suppose there is an integrity constraint requiring that
no	worker	is	a	manager,	expressed	as	a	denial	by	the	fol-
lowing SQL condition, which forms the body of a related
SQL assertion:

NOT EXISTS (SELECT * FROM worker, manager WHERE
worker.name = manager.name).

If	 the	number	of	workers	and	managers	 is	 large,	 then	
checking	whether	this	constraint	is	violated	or	not	can	be	
very costly. The number of facts to be retrieved and tested is
in	the	order	of	the	cardinality	of	the	cross	product	of	worker	
and	manager, whenever the constraint is checked. Fortunately,
however,	the	frequency	and	amount	of	accessing	stored	facts	
can be significantly reduced when going through phases I
-III. Beforehand, a possible objection at this stage should
be dealt with.

SQL programmers might feel compelled to point out that
the	previous	constraint	is	probably	much	easier	checked	by	
some trigger such as the following one in MS SQL Server
syntax:

CREATE TRIGGER no_worker_manager ON worker FOR
INSERT : IF EXISTS

(SELECT * FROM inserted, manager WHERE inserted.name
= manager.name) ROLLBACK.

Its	evaluation	would	only	need	to	access	manager	and	
a	cached	relation	inserted	containing	the	row	to	be	inserted	
to	worker,	but	not	the	stored	part	of	worker. However, it is
easily	overlooked	that	the	sample	integrity	constraint	entails	
that	somebody	who	is	promoted	to	a manager	must	not	be	
a	worker,	thus	necessitating	a	second	trigger	for	insertions	
into	manager. In general, each occurrence of each atom oc-
curring	in	a	constraint	requires	a	separate	trigger,	and	it	is	by	
far	not	always	as	obvious	as	in	the	simple	previous	example	
how they should look. Apart from being error-prone, hand-

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/database-integrity-checking/13691

Related Content

An Optimal Fuzzy Load Balanced Adaptive Gateway Discovery for Ubiquitous Internet Access in

MANET
Prakash Srivastavaand Rakesh Kumar (2016). Journal of Information Technology Research (pp. 45-63).

www.irma-international.org/article/an-optimal-fuzzy-load-balanced-adaptive-gateway-discovery-for-ubiquitous-internet-

access-in-manet/172091

ERP Implementation for Production Planning at EA Cakes Ltd.
Victor Portougal (2005). Journal of Cases on Information Technology (pp. 98-109).

www.irma-international.org/article/erp-implementation-production-planning-cakes/3157

Reorganizing Information Technology Services in an Academic Environment
Marcy Kittnerand Craig Van Slyke (2000). Annals of Cases on Information Technology: Applications and

Management in Organizations (pp. 124-147).

www.irma-international.org/article/reorganizing-information-technology-services-academic/44632

Why Responsibility and Information Systems?
Bernd Carsten Stahl (2004). Responsible Management of Information Systems (pp. 26-43).

www.irma-international.org/chapter/responsibility-information-systems/28443

Cyber-Identity Theft and Fintech Services: Technology Threat Avoidance Perspective
Kwame Okwabi Asante-Offeiand Winfred Yaokumah (2021). Journal of Information Technology Research (pp.

1-19).

www.irma-international.org/article/cyber-identity-theft-and-fintech-services/279031

http://www.igi-global.com/chapter/database-integrity-checking/13691
http://www.igi-global.com/chapter/database-integrity-checking/13691
http://www.irma-international.org/article/an-optimal-fuzzy-load-balanced-adaptive-gateway-discovery-for-ubiquitous-internet-access-in-manet/172091
http://www.irma-international.org/article/an-optimal-fuzzy-load-balanced-adaptive-gateway-discovery-for-ubiquitous-internet-access-in-manet/172091
http://www.irma-international.org/article/erp-implementation-production-planning-cakes/3157
http://www.irma-international.org/article/reorganizing-information-technology-services-academic/44632
http://www.irma-international.org/chapter/responsibility-information-systems/28443
http://www.irma-international.org/article/cyber-identity-theft-and-fintech-services/279031

