
672 Category: Software & Systems Design

IntroductIon

In	the	concept-oriented	programming (CoP) (Savinov, 2005,
2007), the main idea is common to many other approaches
and	consists	in	raising	the	abstraction	level	of	programming	
by introducing new language constructs and mechanisms. The
distinguishing feature of CoP is that it aims at automating
the way objects are represented and accessed (ORA). More
specifically, one of the main concerns in CoP is modeling
the	format	of	object	references	and	the	procedures	executed	
during object access.

For example, if we need to retrieve the current balance
stored	in	a	bank	account	object	then	we	make	the	follow-
ing	simple	method	call:	account.getBalance(). In
object-oriented programming (OOP), it results in an instan-
taneous	execution	of	the	target	method	because	this	variable	
contains	a	primitive	reference	which	is	supposed	to	provide	
direct access to the represented object. In CoP, it is not so
and	everything	depends	on	the	format	of	the	reference	used	
to represent this account object. References in CoP have an
arbitrary custom format defined by the programmer and hence
objects	are	represented	indirectly using abstract identifiers
from a virtual address space. In this case, the real procedure
executed	during	 access	depends	on	what	 is	 stored	 in	 the	
variable	account. In particular, it may well happen that
the	account	object	is	stored	on	a	remote	computer	in	another	
organization. Then, its reference can be rather complex and
include such fields as bankName	and	accNo (Figure 1).
Object	 access	 to	 such	 an	 indirectly	 represented	 account	
will	 involve	 many	 intermediate	 operations	 like	 security	
checks,	 transaction	management,	network	packet	 transfer	
and operations with persistent storage. However, all these
intermediate	actions	will	be	executed	behind	the	scenes	so	

that we have the illusion of instantaneous action. Then the
programmer	is	still	able	to	use	the	target	objects	as	if	they	
were	local	directly	accessible	objects,	at	the	same	time	hav-
ing	a	possibility	to	inject	any	intermediate	code	responsible	
for object representation and access (ORA).

References in CoP are as important as objects because
both	have	arbitrary	structure	and	behavior	associated	with	
them. If OOP deals with objects then CoP deals with both
objects and references. The main role of references consists
in	representing	objects,	that	is,	they	contain	some	data	that	
makes it possible to access the object. Thus, references are
intermediate	 elements	 which	 are	 activated	 each	 time	 the	
represented object is about to be accessed. For example, each
time we read or write a field, or call a method, the object
reference	intercepts	these	requests	and	injects	its	own	ac-
tions. Thus, any object access can trigger a rather complex
sequence	of	intermediate	actions	which	are	executed	behind	
the scenes. In large programs this hidden functionality as-
sociated	with	references	can	account	for	a	great	deal	or	even	
most of the overall complexity. The main task of CoP in this
sense	consists	in	providing	adequate	means	for	effectively	
describing	 this	 type	 of	 hidden	 intermediate	 functionality	
which has a cross-cutting nature. OOP does not provide any
facilities	for	describing	custom	references	and	all	objects	are	
represented and accessed in one and the same way. CoP fills
this	gap	and	allows	the	programmer	to	effectively	separate	
both	concerns		(Dijkstra,	1976):	explicitly	used	business	
logic	of	objects	and	intermediate	functions	executed	implic-
itly during object access.

The	problem	of	indirect	object	representation	and	access	
can	be	solved	by	using	such	approaches	as	dynamic	proxies	
(Blosser, 2000), mixins (Bracha & Cook, 1990; Smaragda-
kis & Batory, 1998), metaobject protocol (Kiczales et al.,

Figure 1. Indirect method call via custom references and intermediate operations

account.getBalance();

invoke {
 Object o = resove(account);
 o.getBalance(); // Direct call
 unresolve(o);
}

Indirect access

reference {
 String bankName;
 String accNo;
}

Indirect
representation

Concept-Oriented Programming
Alexandr Savinov
University of Bonn, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

 673

Concept-Oriented Programming

C
1991; Kiczales et al., 1993), remoting via some middle-
ware (Monson-Haefel, 2006), smart pointers (Stroustrup,
1991), aspect-oriented programming (Kiczales et al., 1997)
and others. However, CoP is the only technology that has
been	developed	for	precisely	this	problem	and	solves	it	in	
a principled manner. It is important that CoP generalizes
OOP by providing a possibility of smooth transfer to the
new technology.

Background

Hierarchical address space

A concept-oriented program can be viewed as a set of nested
spaces (Figure 2). Each space has one parent where it is
identified by some local address. The parent space itself is
identified by some address relative to its own parent and so
on till the root. Thus, any element is identified by a sequence
of local addresses where each next address identifies the
next space. Such an identifier is referred to as a complex ad-
dress	while	its	constituents	are	referred	to	as	segments. This
structure	is	analogous	to	the	conventional	postal	addresses	
where cities are identified by names within countries and
streets have unique names within cities. For example, an
element in the postal address space could be identified by
the	following	complex	address:	<"Germany," "Bonn,"
"University of Bonn">.

An important consequence of such a design is that objects
can interact only by intersecting intermediate space borders.
An access request such as a method call or message cannot
directly (instantaneously) reach its target. Instead, it follows
some	access	path	starting	from	the	external	space	and	leading	
to the internal target space (Figure 2). In order to access an
element	of	the	space	it	is	necessary	to	resolve	all	segments	
of	its	complex	reference	starting	from	the	high	segment	and	
ending with the low segment, which is the target object. The
resolution	procedure	is	responsible	for	locating	the	element	
identified by one segment in the context of the parent space.

Thus,	each	intermediate	border	along	the	access	path	executes	
some	special	functions,	which	are	triggered	automatically	
as an access request intersects this border.

The same approach is used in CoP where objects are
identified by complex references defined by the programmer
rather than using primitive references. For example, if ac-
count	reference	consists	of	two	segments—bank	name	and	
account	number—then	the	balance	could	be	obtained	as	usual	
by	applying	a	method	to	this	complex	reference:	

Account account = <"MyBank," "98765432">;
double balance = account.getBalance();

Since objects in CoP are represented by complex refer-
ences	 each	access	 requires	 several	 intermediate	 steps	 for	
locating the object. For example, in order to resolve the
account	object	represented	by	its	bank	name	and	account	
number it is necessary to find the bank object and then to
find the account object. Notice that the method applied to the
reference is only the last step in this indirect access procedure.
An important assumption of the concept-oriented approach
to	programming	 is	 that	most	of	 the	functionality	 in	 large	
programs is concentrated on intermediate space borders.
Target	methods	in	this	case	account	for	a	relatively	small	
portion of the overall complexity. The goal of CoP in this
sense	can	be	formulated	as	providing	support	for	describing	
such	a	hierarchical	space	at	the	level	of	the	programming	
language rather than in middleware or hardware. The pro-
grammer	then	is	able	to	describe	an	arbitrary	virtual address
space which serves as a container for objects. Such addresses
are	virtual	because	they	are	not	directly	connected	with	the	
real	object	position	and	hence	they	provide	an	additional	
level of abstraction.

references and objects

In OOP, the programmer models objects by classes while
all references have one and the same type. Thus we cannot
influence how objects are represented and how they are

Figure 2. A program can be viewed as a hierarchical space

target objects

start

end

Germany

Bonn

University of Bonn

complex
address

address segments and
intermediate processing

during access

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/concept-oriented-programming/13647

Related Content

On Bias-Variance Analysis for Probabilistic Logic Models
Huma Lodhi (2008). Journal of Information Technology Research (pp. 27-40).

www.irma-international.org/article/bias-variance-analysis-probabilistic-logic/3702

Learnability
Philip Duchastel (2005). Encyclopedia of Information Science and Technology, First Edition (pp. 1803-1806).

www.irma-international.org/chapter/learnability/14516

From Information Management to Knowledge Management
Calin Gurau (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 1957-1963).

www.irma-international.org/chapter/information-management-knowledge-management/13846

Ethics of New Technologies
Joe Gilbert (2009). Encyclopedia of Information Science and Technology, Second Edition (pp. 1450-1453).

www.irma-international.org/chapter/ethics-new-technologies/13767

Deutsche Bank: Leveraging Human Capital with the Knowledge Management System HRBase
Hauke Heierand Hans P. Borgman (2004). Annals of Cases on Information Technology: Volume 6 (pp. 114-

127).

www.irma-international.org/article/deutsche-bank-leveraging-human-capital/44573

http://www.igi-global.com/chapter/concept-oriented-programming/13647
http://www.igi-global.com/chapter/concept-oriented-programming/13647
http://www.irma-international.org/article/bias-variance-analysis-probabilistic-logic/3702
http://www.irma-international.org/chapter/learnability/14516
http://www.irma-international.org/chapter/information-management-knowledge-management/13846
http://www.irma-international.org/chapter/ethics-new-technologies/13767
http://www.irma-international.org/article/deutsche-bank-leveraging-human-capital/44573

