
93

A

Category: Software & Systems Design

Agent-Oriented Software Engineering
Kuldar Taveter
The University of Melbourne, Australia

Leon Sterling
The University of Melbourne, Australia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Over the past decade, the target environment for software

systems must now operate robustly in a dynamic, global,
networked environment comprised of distributed diverse
technologies, where frequent change is inevitable. There

to object-oriented systems, better able to address the new
demands on software. In multi-agent systems, heterogeneous

agents
goals. In addition to being a technological building block,
an agent, also known as an actor, is an important modeling
abstraction that can be used at different stages of software
engineering. The authors while teaching agent-related sub-
jects and interacting with industry have observed that the
agent serves as a powerful anthropomorphic notion readily
understood by novices. It is easy to explain to even a non-
technical person that one or more software agents are going
to perform a set of tasks on your behalf.

software engineering as a discipline applied
by teams to produce high-quality, large-scale, cost-effective

over time. Methods and processes are emerging to place
software development on a parallel with other engineering
endeavors. Software engineering courses give increasing
focus to teaching students how to analyze software designs,
emphasizing imbuing software with quality attributes such
as performance, correctness, scalability, and security.

-

software lifecycle from analyzing the problem domain to
maintaining the functional software system. An agent-ori-
ented approach can be useful even when the resulting system
neither consists of nor includes software agents. Some other

-

of the AOSE methodologies are yet widely accepted, AOSE

available agent-oriented methodologies.
AOSE approaches loosely fall into one of two categories.

One approach adds agent extensions to an existing object-

builds a custom software methodology around agent con-

pioneering example.
In this article, we address the new paradigm of AOSE

for developing both agent-based and traditional software
systems.

BACKGROUND

Software engineering deals with sociotechnical systems.
sociotechnical system as one

processes, and offers an interface, implemented in software,
to human users. Software engineering addresses developing
software components of sociotechnical systems. Software
engineering is therefore critical for the successful develop-
ment of complex, computer-based, sociotechnical systems
because a software engineer should have a broad awareness
of how that software interacts with other hardware and
software systems and its intended use, not only the software

A conventional software engineering process represented
in Figure 1 contains the stages of requirements engineering,
design, implementation, testing, and maintenance.

-
software design consist-

ing of both high-level architectural design of the system and
detailed design of the software components. Implementation
follows, increasingly in the form of code generation using

tools. The code must then be tested to uncover and correct
as many errors as possible before delivery to the customer.

94

Agent-Oriented Software Engineering

useful testing strategies and methods. Finally, there is ongo-
ing maintenance.

Object-oriented software engineering
numerous AOSE methodologies build on, adopts these
conventional steps. Object-oriented approaches characterize

classes and objects relevant to the problem domain; design
provides architecture, interface, and component-level detail;

transforms design into code.

for software analysis and design has become widely used
in the industry over the past decade. A widely used OOSE
process is the

Development Process proposed by Jacobson, Booch, and

design, implementation, testing, and deployment.

Extreme Programming
emphasize lightweight processes such as test-case-based
development and rapid prototyping. They de-emphasize
detailed modeling on which they blame the heavy weight

the Model-Driven Architecture

computation-independent domain models are transformed
into platform-independent design models that are then turned

NEW SOFTWARE ENGINEERING
PARADIGM

challenges for software engineering. For such systems, cur-
rent software engineering techniques cannot guarantee quality
attributes such as correctness to hold after deployment. Cor-
rectness is traditionally assured by testing the system before
release, against documented requirements. Such assurance
is lost if system behavior changes due to continuous adapta-
tion or environment change. For example, a sociotechnical

mirror changes in the human organization.
Similarly, system performance, reliability, security,

usability, and maintainability can be compromised due to
adaptation or environmental changes. Without explicit rep-
resentation of system requirements and constant validation
at run time, there is no guarantee that the system functions
correctly.

To address the challenges described, a sociotechnical
system should be analyzed and designed in terms of agents

-
gineering, as well as at design, implementation, testing,
and maintenance stages of the software lifecycle. From the
start of a software engineering process, a distinction should
be introduced between active and passive entities, that is,

environment capable of both perceiving the environment
and acting on it. The agent metaphor subsumes

natural
as social/institutional

-

use cases, but otherwise remain external
to the sociotechnical system model.

 role as a coherent set of functional responsi-
bilities specifying what the agent playing the role is expected
to do in the organization within some specialized context or
domain of endeavor: with respect to both other agents and the

business domain, a human or institutional agent acting in the
role of “customer” has a goal of accomplishing something.
To achieve its goal, the agent uses some service provided by

provider performs the service requested if it is able to do
so but the service provider also has an option to refuse the
service request. Even though the agent requesting the ser-
vice may not explicitly communicate its goals to the service
provider agent, the latter always “internalizes” the whole

service. For example, given a customer wanting to rent a car,
the goal of a car rental company is to provide the customer

Figure 1. A software engineering process

g

g

e

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/agent-oriented-software-engineering/13555

Related Content

Understanding Cross-Level Interactions of Firm-Level Information Technology and Industry

Environment: A Multilevel Model of Business Value
Matt Wimble, Harminder Singhand Brandis Phillips (2018). Information Resources Management Journal (pp. 1-

20).

www.irma-international.org/article/understanding-cross-level-interactions-of-firm-level-information-technology-and-industry-

environment/193610

Evolution of the Euro and Currency Competition in the Global ICT Age
Sadayoshi Takaya (2008). Information Communication Technologies: Concepts, Methodologies, Tools, and

Applications (pp. 226-237).

www.irma-international.org/chapter/evolution-euro-currency-competition-global/22667

The Extent and Nature of Computer-Based Records Management in the United States
Terry D. Lundgrenand Carol A. Lundgren (1992). Information Resources Management Journal (pp. 1-8).

www.irma-international.org/article/extent-nature-computer-based-records/50955

SZ-GESA: A Geodesical Efficient Self-Deployment Algorithm for Steppe Zones
Benyagoub Mohamed, Saadi Slamiand Hafaifa Ahmed (2020). Journal of Information Technology Research

(pp. 1-23).

www.irma-international.org/article/sz-gesa/249214

Enhancing Organisational Maturity with Benefits Management
Jorge Gomesand Mário Romão (2015). International Journal of Information Technology Project Management

(pp. 34-47).

www.irma-international.org/article/enhancing-organisational-maturity-with-benefits-management/133222

http://www.igi-global.com/chapter/agent-oriented-software-engineering/13555
http://www.igi-global.com/chapter/agent-oriented-software-engineering/13555
http://www.irma-international.org/article/understanding-cross-level-interactions-of-firm-level-information-technology-and-industry-environment/193610
http://www.irma-international.org/article/understanding-cross-level-interactions-of-firm-level-information-technology-and-industry-environment/193610
http://www.irma-international.org/chapter/evolution-euro-currency-competition-global/22667
http://www.irma-international.org/article/extent-nature-computer-based-records/50955
http://www.irma-international.org/article/sz-gesa/249214
http://www.irma-international.org/article/enhancing-organisational-maturity-with-benefits-management/133222

