
 957

�
#��
�#
��
�		�������������

Linda L. Werner
University of California, Santa Cruz, USA

Brian Hanks
Fort Lewis College, USA

Charlie McDowell
University of California, Santa Cruz, USA

Copyright © 2006, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Studies of pair programming both in industry and
academic settings have found improvements in pro-
gram quality, test scores, confidence, enjoyment,
and retention in computer-related majors. In this
article we define pair programming, summarize the
results of pair programming research, and show why
we believe pair programming will help women and
men succeed in IT majors.

BACKGROUND

Traditional undergraduate introductory programming
courses generally require that students work indi-
vidually on their programming assignments. In these
courses, working with another student on program-
ming homework constitutes cheating and is not
tolerated. The only resources available to help stu-
dents with problems are the course instructor, the
textbook, and the teaching assistant. They are not
allowed to work with their peers, who are struggling
with the same material. This pedagogical approach
teaches introductory programming students that soft-
ware development is an individual activity, poten-
tially giving students the mistaken impression that
software engineering is an isolating and lonely ca-
reer. Gender studies suggest that such a view will
disproportionately discourage women from pursuing
IT careers (Margolis & Fisher, 2002).

Cooperative or collaborative learning models in-
volve two or more individuals taking turns helping
one another learn information (Horn, Collier, Ox-
ford, Bond, & Dansereu, 1998). Some researchers
differentiate between cooperative and collaborative

methods by stating that cooperative learning in-
volves students taking responsibility for subtasks,
whereas collaborative learning requires that the
group works together on all aspects of the task
(Underwood & Underwood, 1999). The consensus
from numerous field and laboratory investigations is
that academic achievement such as performance on
a test is enhanced when an individual learns informa-
tion with others as opposed to individually (O’Donnell
& Dansereu, 1992; Slavin, 1996; Totten, Sills, Digby,
& Russ, 1991).

Cooperative activities have been taught and prac-
ticed for other software system development tasks
such as design and software engineering but not for
programming (Basili, Green, Laitenburger, Lanubile,
Shull, Sorumgard, et al., 1996; Fagan, 1986, Sauer,
Jeffrey, Land, & Yetton, 2000; Schlimmer, Fletcher,
& Hermens, 1994). Often cooperative methods are
used in upper division computer science (CS) courses
such as compiler design and software engineering in
which group projects are encouraged or required. In
these courses, the group projects are split up by the
group members and tackled individually before being
recombined to form a single solution. Sometimes a
software engineering instructor offers assistance to
the student groups regarding techniques for coop-
eration but these topics are rarely discussed in other
CS courses.

The benefits of collaboration while programming
in both industrial and academic settings have been
discussed by Flor and Hutchins (1991), Constantine
(1995), Coplien (1995), and Anderson, Beattie, Beck,
Bryant, DeArment, Fowler, et al. (1998). However,
the recent growth of extreme programming (XP)
(Beck, 2000) has brought considerable attention to
the form of collaborative programming known as

958

Pair Programming and Gender

pair programming (Williams & Kessler, 2003). Ex-
treme programming is a software development
method that differs in a number of ways from
generally accepted prior software development meth-
ods. These differences include writing module tests
before writing the modules, working closely with the
customer to develop the specification as the pro-
gram is developed, and an emphasis on teamwork as
exemplified by pair programming, to name just a
few. The emphasis on teamwork is an aspect of
extreme programming that may be particularly ap-
pealing to women.

With pair programming, two software develop-
ers work side-by-side at one computer, each taking
full responsibility for the design, coding, and testing
of the program under development. One person is
called the driver and controls the mouse and key-
board; the other is called the navigator and provides
a constant review of the code as it is produced. The
roles are reversed periodically so that each member
of the pair has experience as the driver and naviga-
tor. Studies have shown that pair programming
produces code that has fewer defects and takes
approximately the same total time as when code is
produced by a solitary programmer (Nosek, 1998;
Williams, Kessler, Cunningham, & Jeffries, 2000).
Any code that is produced by only one member of a
pair is either discarded or reviewed by the pair
together prior to inclusion into the program.

PAIR PROGRAMMING IN THE
CLASSROOM

Early experimental research with pair programming
using small numbers of students or professional
programmers found that pairs outperformed those
who worked alone (Nosek, 1998; Williams, Kessler,
Cunningham, & Jeffries, 2000). Pairs significantly
outperformed individual programmers in terms of
program functionality and readability, reported
greater satisfaction with the problem-solving pro-
cess, and had greater confidence in their solutions.
Pairs took slightly longer to complete their programs,
but these programs contained fewer defects.

A series of experiments conducted at the Univer-
sity of California at Santa Cruz (UCSC) (Hanks,
McDowell, Draper, & Krnjajic, 2004; McDowell,

Werner, Bullock, & Fernald, 2003a; Werner, Hanks,
& McDowell, 2005) found that students who pair
programmed in their introductory programming
course were more confident in their work. They
were also more likely to complete and pass the
course, to take additional computer science courses,
to declare computer-related majors, and to produce
higher quality programs than students who pro-
grammed alone.

Naggapan, Williams, Ferzli, Yang, Wiebe, Miller,
et al. (2003) report that pair programming results in
programming laboratories that are more conducive
to advanced, active learning. Students in these labs
ask more substantive questions, are more produc-
tive, and are less frustrated.

To ensure that paired students enjoy these ben-
efits, it is important that they have compatible part-
ners. Researchers at the University of Wales (Tho-
mas, Ratcliffe, & Robertson, 2003) investigated
issues regarding partner compatibility for pair pro-
gramming students. They asked more than 60 stu-
dents to indicate their self-perceived level of exper-
tise and confidence in their programming abilities,
and used these rankings to evaluate pairing success.
It is important to note that self-reported ability and
actual ability are different measures, as 5 of the 17
students who felt that they were highly capable did
very poorly in the course.

Thomas et al. found some evidence that students
do their best work when paired with students with
similar confidence levels. Students with less self-
confidence seem to enjoy pair programming more
than those students who reported the highest levels
of confidence. As there were only seven women in
the class, no conclusions about how pairing affected
them can be made.

Researchers at North Carolina State University
investigated factors that could affect student pair
compatibility. Out of 550 graduate and undergradu-
ate students, more than 90% reported being compat-
ible with their partner (Katira, Williams, Wiebe,
Miller, Balik, & Gehringer, 2004). Factors such as
personality type, actual skill level, and self-esteem
appear to have little, if any, effect on partner com-
patibility. The authors do not discuss any relation
between gender and compatibility. Students reported
they were more compatible with partners who they
perceived to have similar levels of technical compe-

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/pair-programming-gender/12856

Related Content

Understanding the Mommy Tracks in the IT Workforce
Jeria L. Quesenberryand Eileen M. Trauth (2006). Encyclopedia of Gender and Information Technology (pp. 1178-

1183).

www.irma-international.org/chapter/understanding-mommy-tracks-workforce/12891

Online Sisterhood: Women, Income Generation, and Online Social Capital in Urban Indonesia
Ariane J. Utomo (2016). Gender Considerations in Online Consumption Behavior and Internet Use (pp. 208-227).

www.irma-international.org/chapter/online-sisterhood/148840

Gender, Place and Information Technology
Anita Greenhill (2006). Encyclopedia of Gender and Information Technology (pp. 699-704).

www.irma-international.org/chapter/gender-place-information-technology/12813

Gender-Biased Attitudes Toward Technology
Konrad Morganand Madeleine Morgan (2006). Encyclopedia of Gender and Information Technology (pp. 711-713).

www.irma-international.org/chapter/gender-biased-attitudes-toward-technology/12815

Multi-Disciplinary, Scientific, Gender Research
Antonio M. Lopez Jr. (2006). Encyclopedia of Gender and Information Technology (pp. 907-913).

www.irma-international.org/chapter/multi-disciplinary-scientific-gender-research/12848

http://www.igi-global.com/chapter/pair-programming-gender/12856
http://www.igi-global.com/chapter/pair-programming-gender/12856
http://www.irma-international.org/chapter/understanding-mommy-tracks-workforce/12891
http://www.irma-international.org/chapter/online-sisterhood/148840
http://www.irma-international.org/chapter/gender-place-information-technology/12813
http://www.irma-international.org/chapter/gender-biased-attitudes-toward-technology/12815
http://www.irma-international.org/chapter/multi-disciplinary-scientific-gender-research/12848

