
106

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

Using Simulation Games in
Teaching Formal Methods
for Software Development

ABSTRACT

Because of the current trend of massification of higher education, motivation of students is a serious
issue, especially in courses closely related to mathematics. The ones that undoubtedly belong to this
group are courses dealing with formal methods for software development, such as Z notation, B-Method,
or VDM. The chapter shows how a customized simulation game can be used to bring a domain typical
for utilization of formal methods, the railway domain, to students and thus motivate them to learn these
sophisticated ways of software development. By means of two examples, it demonstrates that such a
tool, despite its limited scope, can be used to teach a variety of concepts related to formal methods. It
also discusses related approaches to teaching formal methods, describes the customized game and its
application in teaching, and evaluates experience with the application.

INTRODUCTION

We live in the era of massification of higher educa-
tion. We encounter not only highly motivated and
interested students but also average ones, where
didactic methods, usually used on lower types of
schools become relevant. All kinds of subjects in
university curricula are affected by this situation
but maybe the most suffering ones are those closely

related to the field of mathematics. And formal
methods courses definitely belong to this group.

Formal methods (FM) are rigorous mathemati-
cally based techniques for the specification, analy-
sis, development and verification of software and
hardware. Rigorous means that a formal method
provides a formal language with unambiguously
defined syntax and semantics and mathematically
based means that some mathematical apparatus
(formal logic, set theory, etc.) is used to define the

Štefan Korečko
Technical University of Košice, Slovakia

Ján Sorád
Technical University of Košice, Slovakia

DOI: 10.4018/978-1-4666-7304-5.ch006

107

Using Simulation Games in Teaching Formal Methods for Software Development
﻿

language. But as Cerone, Roggenbach, Schlingloff,
Schneider and Shaikh (2013) note, a language is
not enough to constitute a formal method. To call
it a method, procedures that allow doing something
with specifications written in the language have
to be present, too. An example of a well-known
FM are regular expressions (Cerone et al., 2013):
Syntax of its language can be specified by a
context-free grammar. For the semantics there
are several ways how to define it, for example
by specifying corresponding sets of words or
constructing a finite automaton that recognizes
words satisfying given expression. A procedure
can, for example, be a replacement of every word
that satisfies given expression by another word.
There are many ways how to classify FM and one,
especially interesting from the educational point of
view, is a taxonomy based on automation of their
procedures and on how easy it is to use them. This
taxonomy distinguishes between lightweight and
heavyweight formal methods. Lightweight formal
methods usually do not require deep expertise. The
heavyweight ones are more complex, less auto-
matic, but also more finely grained and powerful
(Almeida, Frade, Pinto, & de Sousa, 2011). We
can say that for a lightweight FM it is enough to
learn its language and know what button to hit
in corresponding software tool to do this or that.
Often it is not even necessary to learn formal se-
mantics of its language, an explanation in a natural
language is sufficient. The aforementioned regular
expressions are a lightweight FM. To use them
for a text search or replacement in a text editor
one just has to read few lines in the editor user’s
manual, write an expression to an appropriate text
field and press a button next to it. On the other
hand, significant examples of heavyweight FM
are those involving theorem proving as a method
of software correctness verification. In principle,
the theorem proving cannot be fully automated
because underlying theories are usually not de-
cidable. So, to prove assertions about a system a
human assistance is often required and to be able
to assist one has to possess knowledge about the

syntax and formal semantics of the language of
given FM and operation of its prover. This means
a lot of effort but as Harrison (2008) points out,
theorem proving brings substantial benefits over
other, highly automated, verification methods
(e.g. model checking). Provided that properties
of a system are correctly specified, its formal
verification can ensure that the properties will
hold in any state of the system. In an ideal world
all software should be like this – 100% verified
before its delivery to users. But in reality we use
to get faulty software, be it games, operating sys-
tems or firmware, and faults are fixed afterwards
by means of updates.

As university teachers we sometimes experi-
ence resistance from students when a new language
or method is introduced, even if it is a widely used
one. And position of formal methods courses in
software engineering curricula is much worse.
Not only are FM too close to the unpopular math
but there are not many companies using them in
practice. And, especially in the case of the heavy-
weight ones, we can find them only in specific
application areas where their use and cost are
justified (Almeida et al., 2011). Of course, we
would like to see more widespread utilization of
FM and we hope to achieve it by introducing as
much students as possible to the art of their ap-
plication. A big obstacle here is an elective status
of many FM courses. So, the essential question is
how to motivate students to take FM courses and
to stay in them. It is critical to properly choose
an application area on which the use of FM will
be demonstrated and for which the students will
develop something using formal methods. An area
where a software fault is able to cause too much
damage or loss of lives before any update can be
applied. In addition, it should be an area where
formal methods have already been successfully
applied. According to the comprehensive survey
(Woodcock, Larsen, Bicarregui, & Fitzgerald,
2009) and its recent update (Fitzgerald, Bicar-
regui, Larsen, & Woodcock, 2013) the most of
FM industrial success stories can be found in

23 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/using-simulation-games-in-teaching-formal-

methods-for-software-development/122199

Related Content

Collaboration-Driven Management Education
Owen P. Hall Jr.and Kenneth D. Ko (2021). Research Anthology on Business and Technical Education in

the Information Era (pp. 1419-1438).

www.irma-international.org/chapter/collaboration-driven-management-education/274436

Normative Learning for Normalized Work
Karim A. Remtulla (2010). Socio-Cultural Impacts of Workplace E-Learning: Epistemology, Ontology and

Pedagogy (pp. 23-39).

www.irma-international.org/chapter/normative-learning-normalized-work/42874

Open Source Social Networks in Education
Amine V. Bitarand Antoine M. Melki (2015). Innovative Teaching Strategies and New Learning Paradigms

in Computer Programming (pp. 30-45).

www.irma-international.org/chapter/open-source-social-networks-in-education/122194

Some Aspects of the Growth of University Student Internship in Japan
Yasumasa Shinohara (2019). Global Perspectives on Work-Based Learning Initiatives (pp. 244-267).

www.irma-international.org/chapter/some-aspects-of-the-growth-of-university-student-internship-in-japan/213476

Business Students as End-User Developers: Simulating "Real Life" Situations through Case

Study Approach
Sandra Barker (2003). Current Issues in IT Education (pp. 304-312).

www.irma-international.org/chapter/business-students-end-user-developers/7352

http://www.igi-global.com/chapter/using-simulation-games-in-teaching-formal-methods-for-software-development/122199
http://www.igi-global.com/chapter/using-simulation-games-in-teaching-formal-methods-for-software-development/122199
http://www.irma-international.org/chapter/collaboration-driven-management-education/274436
http://www.irma-international.org/chapter/normative-learning-normalized-work/42874
http://www.irma-international.org/chapter/open-source-social-networks-in-education/122194
http://www.irma-international.org/chapter/some-aspects-of-the-growth-of-university-student-internship-in-japan/213476
http://www.irma-international.org/chapter/business-students-end-user-developers/7352

