
1966

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  101

Model-Driven Reverse 
Engineering of Open 

Source Systems

ABSTRACT

Open source software systems have poor or inexistent documentation and contributors are often scattered 
or missing. The reuse-based composition and maintenance of open source software systems therefore 
implies that program comprehension becomes a critical activity if all the embedded behavior is to be 
preserved. Program comprehension has traditionally been addressed by reverse engineering techniques 
which retrieve system design models such as class diagrams. These abstract representations provide a 
key artifact during migration or evolution. However, this method may retrieve large complex class dia-
grams which do not ensure a suitable program comprehension. This chapter attempts to improve program 
comprehension by providing a model-driven reverse engineering technique with which to obtain business 
processes models that can be used in combination with system design models such as class diagrams. 
The advantage of this approach is that business processes provide a simple system viewpoint at a higher 
abstraction level and filter out particular technical details related to source code. The technique is fully 
developed and tool-supported within an R&D project about global software development in which col-
laborate two universities and five companies. The automation of the approach facilitates its validation 
and transference through an industrial case study involving two open source systems.

INTRODUCTION

Production and distribution models of software 
industry have been transformed by the open source 
initiative (Open Source Initiative, 2011). While 

several commercial software companies produce 
and distribute software in a centralized way, the 
open source model advocates developing software 
in peer production by bartering and collaboration 
(Raymond, 1999).

Ricardo Perez-Castillo
University of Castilla-La Mancha, Spain

Mario Piattini
University of Castilla-La Mancha, Spain

DOI: 10.4018/978-1-4666-7230-7.ch101



1967

Model-Driven Reverse Engineering of Open Source Systems
﻿

The main advantage of open source code is that 
it maximizes the reuse of software and reduces 
development efforts and cost regarding software 
access. From an economical viewpoint, the open 
source model consequently allows companies to 
save a lot of money (Glass, 2004).

The open source’s advantages encourage many 
companies to use open source code. Some software 
development companies employ open source code 
as a basis for developing new systems. Other com-
panies offer maintenance support for open source 
systems. However, when developers or maintainers 
are faced with open source code, they can find 
some program comprehension difficulties, which 
prevent agility in companies (Kotlarsky, Oshri, 
Kumar, & Hillegersberg, 2008). These problems 
are owing to the team-cross and distributed de-
velopment nature of open source code (Rigby, 
German, & Storey, 2008). This nature implies a 
poor, confuse (or even inexistent) documentation 
and there could be not many expert people since a 
source code system is usually maintained for many 
different people throughout its lifecycle (Costa, 
Santana, & Souza, 2009). Program comprehension 
is, therefore, extremely needed when maintainers 
try to use open source code (even more than non-
open source software systems).

Program comprehension is a key reverse engi-
neering activity which automates the analysis of 
the behavior of existing software systems (Canfora, 
Di Penta, & Cerulo, 2011; Maletic & Marcus, 
2001). This activity is so important because it 
allows knowing all the meaningful information 
to be effectively used in the next reengineering 
stages (i.e., restructuring and forward engineer-
ing), which is aimed at migrating or evolving the 
existing software system.

There is a wide variety of program compre-
hension techniques which are categorized in two 
approaches: the static and dynamic analysis (T. 
Eisenbarth, Koschke, & Simon, 2001). Static 
analysis is based on the compiler theory. These 
techniques syntactically analyze source code to 
recover structural elements (e.g., the system de-

sign based on class diagrams) or to obtain some 
metrics (e.g., number of lines of source code, the 
cyclomatic complexity, the number of coupling 
methods, etc.). Moreover, dynamic analysis fo-
cuses on the behavior of the system derived by its 
execution. This kind of techniques retrieves dead 
code parts, detects execution bottlenecks, etc.

Traditional program comprehension tech-
niques, however have some limitations. Firstly, 
traceability between high-level representations and 
existing source code is error-prone, which makes it 
difficult to restructure the abstract representations 
during the restructuring stage. Secondly, obtained 
abstract representations have higher level of detail 
and complexity (Nugroho, 2009). This means that 
there are several retrieved elements that might 
have been omitted to reduce the complexity of 
abstract representation and, therefore, improve 
its understandability (Gemino & Wand, 2005; 
Reijers & Mendling, 2010).

This chapter proposes a business-awareness 
program comprehension technique following 
model-driven development principles. The pro-
posal obtains business process models from an 
existing software system. Business process models 
represent the sequence of coordinated business 
activities supported by the system to achieve the 
common business goals of a company. Business 
processes, probably, are the models at the highest 
abstraction level. This technique does not replace 
to other program comprehension techniques (like 
those to obtain system design based on a set of 
class diagrams) but it complements them. This 
chapter deals with the usage of both business 
process models and traditional class diagrams to 
get a better comprehension. The main implication 
is that a better comprehension during reengi-
neering of open source systems leads to a better 
enterprise agility.

The proposal is aided by a tool especially de-
veloped to support the technique and facilitate its 
adoption. The supporting tool makes it possible to 
conduct a case study involving some open source 
software systems. The case study demonstrates that 



 

 

20 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/model-driven-reverse-engineering-of-open-

source-systems/121011

Related Content

Consumer Welfare and Market Structure in a Model of Competition between Open Source and

Proprietary Software
Alexia Gaudeul (2009). International Journal of Open Source Software and Processes (pp. 43-65).

www.irma-international.org/article/consumer-welfare-market-structure-model/4089

Patchwork Prototyping with Open Source Software
M. Cameron Jones (2007). Handbook of Research on Open Source Software: Technological, Economic,

and Social Perspectives  (pp. 126-140).

www.irma-international.org/chapter/patchwork-prototyping-open-source-software/21184

The State of Technology in Venezuela in the Context of Production Chains
Leandro Rabindranath León (2015). Societal Benefits of Freely Accessible Technologies and Knowledge

Resources (pp. 255-284).

www.irma-international.org/chapter/the-state-of-technology-in-venezuela-in-the-context-of-production-chains/130791

Open Source E-Learning Systems: Evaluation of Features and Functionality
Phillip Olla (2007). Handbook of Research on Open Source Software: Technological, Economic, and Social

Perspectives  (pp. 638-648).

www.irma-international.org/chapter/open-source-learning-systems/21222

Evaluating Open Source Software through Prototyping
Ralf Carbonand Marcus Ciolkowski (2007). Handbook of Research on Open Source Software:

Technological, Economic, and Social Perspectives  (pp. 269-281).

www.irma-international.org/chapter/evaluating-open-source-software-through/21194

http://www.igi-global.com/chapter/model-driven-reverse-engineering-of-open-source-systems/121011
http://www.igi-global.com/chapter/model-driven-reverse-engineering-of-open-source-systems/121011
http://www.irma-international.org/article/consumer-welfare-market-structure-model/4089
http://www.irma-international.org/chapter/patchwork-prototyping-open-source-software/21184
http://www.irma-international.org/chapter/the-state-of-technology-in-venezuela-in-the-context-of-production-chains/130791
http://www.irma-international.org/chapter/open-source-learning-systems/21222
http://www.irma-international.org/chapter/evaluating-open-source-software-through/21194

