
997

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 48

DOI: 10.4018/978-1-4666-7230-7.ch048

Learning Software Industry
Practices with Open Source

and Free Software Tools

ABSTRACT

This chapter describes a pragmatic approach to using open source and free software tools as valuable re-
sources to affect learning of software industry practices using iterative and incremental development methods.
The authors discuss how the above resources are used in teaching undergraduate Software Engineering
(SE) courses. More specifically, they illustrate iterative and incremental development, documenting soft-
ware requirements, version control and source code management, coding standards compliance, design
visualization, software testing, software metrics, release deliverables, software engineering ethics, and
professional practices. The authors also present how they positioned the activities of this course to qualify
it for writing intensive designation. End of semester course evaluations and anecdotal evidence indicate
that the proposed approach is effective in educating students in software industry practices.

INTRODUCTION

Software Engineering (SE) courses are some of
the most challenging ones to teach in Computer
Science (CS) curricula. Not only do students
need to learn basic concepts, principles, and
methods, but also master industry practices and
tools in these courses. Lecture-based approaches
to espousing software engineering principles
hardly engage students’ attention (Nandigam,

Gudivada, & Hamou-Lhadj, 2008). Students of-
ten view software engineering principles as mere
academic concepts and graduate without a clear
understanding of how these principles can be used
in practice. By the time students take their first SE
course, it is quite unlikely that they have written
programs that are more than 500 lines long. It is
also equally unlikely they had an opportunity to
inspect large programs (> a few thousand lines
of code) written by others.

Jagadeesh Nandigam
Grand Valley State University, USA

Venkat N Gudivada
Marshall University, USA

998

Learning Software Industry Practices with Open Source and Free Software
﻿

One practice that seems to pervade across
universities to bringing software engineering
professional practices into the classroom is us-
ing a semester-long term project. In this project,
students are expected to demonstrate their ability
to apply software engineering practices and tools
in solving a real-world problem in a team environ-
ment. However, there is no established approach
to accomplishing the above goal due to various
factors discussed below.

Selecting a right project with appropriate
scope is in itself a challenge. In our experience
with teaching SE courses, asking student teams
to self-select a project rarely produces success-
ful outcomes. Students typically overestimate
or underestimate project scope and complexity.
Overestimation leads to selecting a trivial project
and embellishing it with superficial complexity.
Underestimation results in switching to a trivial
project halfway through the semester. In either
case, the project scope and complexity are insuf-
ficient for students to fully experience professional
software development practices.

The overarching goal of this chapter is to pres-
ent our approach to teaching software engineering
industry practices and tools in the backdrop of SE
concepts, theory, methods, and principles. Using
suitable software tools and team projects, we
promote conceptual understanding and practical
skills of the following topics: role of tools in the
software development life cycle; iterative and
incremental development as a means for timely
project completion; requirements elicitation and
specification; source code management with ver-
sion control; importance of adhering to coding
standards; design visualization; verification and
validation through software testing; measuring and
using software metrics as a means for improving
software quality; software release management;
ethics and professional practice; and writing as
a means to learning. We also discuss how Open
Source code bases can be used in achieving the
above learning goals.

SOFTWARE ENGINEERING COURSE

Our undergraduate SE course includes a semester-
long (about 14 weeks) software development
project to provide students hands-on experience
with processes, methods, techniques, and tools of
software development. The course first provides
the necessary theoretical foundation for a broad
range of topics – software engineering process
models, project management, software require-
ments elicitation and specification, use case
modeling, UML, object-oriented analysis and
design, design patterns, test-driven development,
version control, system building, software testing,
mock object frameworks, software maintenance,
software internationalization, SE ethics, and writ-
ing skills. Though the topics are quite a few, very
focused and conceptually oriented lectures make
this task possible. Students gain practical aspects
of these topics by working on a realistic project
in a team environment.

Students begin the course by writing a short
formal paper on a SE ethics topic. The semester-
long project involves development of a software
product using an iterative and incremental
development model. Students use Eclipse IDE
(n.d.), and several free and open source tools and
plugins available for the Eclipse IDE. The product
is delivered incrementally in three releases with
each release taking roughly 4 weeks of effort. The
course also includes a midterm, a final exam, and
several quizzes as part of formative and summative
assessments. The weight distribution of various
components in the course is: term paper (10%),
ethics writing assignment (5%), term project
(30%), midterm exam (20%), final exam (25%),
and quizzes (10%).

SOFTWARE TOOLS USED

Though Computer-Aided Software Engineering
(CASE) is not new, the range and ubiquity of
both Open Source and free software tools have

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/learning-software-industry-practices-with-open-

source-and-free-software-tools/120954

Related Content

Open Source Software Adoption: Anatomy of Success and Failure
Brian Fitzgerald (2011). Multi-Disciplinary Advancement in Open Source Software and Processes (pp. 1-

23).

www.irma-international.org/chapter/open-source-software-adoption/52242

Case Studies
Barbara Russo, Marco Scotto, Alberto Sillittiand Giancarlo Succi (2010). Agile Technologies in Open

Source Development (pp. 144-155).

www.irma-international.org/chapter/case-studies/36502

A Resourceful Approach in Security Testing to Protect Electronic Payment System Against

Unforeseen Attack
Rajat Kumar Behera, Abhaya Kumar Sahooand Ajay Jena (2017). International Journal of Open Source

Software and Processes (pp. 24-48).

www.irma-international.org/article/a-resourceful-approach-in-security-testing-to-protect-electronic-payment-system-

against-unforeseen-attack/201056

Overview of Open Source Tools for Agile Development
Barbara Russo, Marco Scotto, Alberto Sillittiand Giancarlo Succi (2010). Agile Technologies in Open

Source Development (pp. 343-363).

www.irma-international.org/chapter/overview-open-source-tools-agile/36512

Discourses on User Participation: Findings from Open Source Software Development Context
Netta Iivari (2009). International Journal of Open Source Software and Processes (pp. 44-59).

www.irma-international.org/article/discourses-user-participation/38905

http://www.igi-global.com/chapter/learning-software-industry-practices-with-open-source-and-free-software-tools/120954
http://www.igi-global.com/chapter/learning-software-industry-practices-with-open-source-and-free-software-tools/120954
http://www.irma-international.org/chapter/open-source-software-adoption/52242
http://www.irma-international.org/chapter/case-studies/36502
http://www.irma-international.org/article/a-resourceful-approach-in-security-testing-to-protect-electronic-payment-system-against-unforeseen-attack/201056
http://www.irma-international.org/article/a-resourceful-approach-in-security-testing-to-protect-electronic-payment-system-against-unforeseen-attack/201056
http://www.irma-international.org/chapter/overview-open-source-tools-agile/36512
http://www.irma-international.org/article/discourses-user-participation/38905

