Faculty Participation in Distance Education Programs

Catherine C. Schifter
Temple University, USA

INTRODUCTION

Distance education is not new to higher education. Correspondence courses have served students since the 19th century. What is different today is the use of interactive computer-mediated communication systems for distance education (DE). Indeed, DE is present in all levels of higher education, and the decision to offer DE is often an administrative one without faculty consultation.

A successful DE program needs faculty participation. To teach in a DE program, faculty need to reconsider the teaching and learning process, and to modify their teaching methods to adopt interactive computer-mediated communication and teaching strategies that take advantage of the resources afforded by technology-mediated pedagogy, and to be more student centered (Beaudoin, 1998). This shift in roles means that successful teaching skills for DE are different from those required in face-to-face teaching (Hackman & Walker, 1990); however, faculty training programs tend to focus on how to use the computers or software, not on how to teach in DE environments (Merkley, Bozik & Oakland, 1997). Given that DE is not a common concept for most faculty and they will need to learn how to teach in the DE environment, there are two questions for DE administrators to answer. First, what motivates faculty to embrace this new teaching environment and to change their teaching strategies? And second, what assistance, incentives and compensation policies support faculty in this educational transformation?

The literature on DE describes the students as older, mature, self-initiators interested in outcomes (Hiltz, 1994) who are taking time away from family and careers to go back to school (Keegan, 1986); less likely to be female (Blumenstyk, 1997); and less likely to be from a minority population (Gose, 1997; Sanchez & Gunawardena, 1998). There are “how-to-do” DE publications (Berge & Collins, 1995; Melton, 1997) addressing such issues as distance learning environments and course design, and case studies of successful DE courses (Monoescu, Schifter & Greenwood, 2003). What is missing is discussion of the faculty, full or part time, who teach the courses and why they participate while others do not. In addition, there is minimal discussion about what DE administrators do to encourage and/or support faculty participation in DE.

The literature portrays faculty as preferring traditional courses (i.e., face-to-face) over DE courses because there were fewer teacher-student interactions with DE (Taylor & White, 1991); as begin concerned about quality of interaction, administrative support and rewards (Clark, 1993); and as perceiving a lack of overall administrative support (Olcott & Wright, 1995). Perhaps the required change in teaching methods and the teaching environment also led to the reported lack of enthusiasm for participating in DE. One could argue also that many faculty are skeptical of DE because they could not “see” it and had certainly not experienced it firsthand.

Faculty participation in DE has been described as “for a variety of personal reasons, ranging from diversity of experience to altruism toward the non-traditional learner” (Dillon, 1989, p. 42). Dillon and Walsh (1992) reviewed 225 articles and concluded that “…faculty motivation to teach at a distance results from intrinsic [prestige, self esteem] rather than extrinsic incentives [monetary rewards]” (p. 16). This finding was further supported by Betts (1998) and Schifter (2000), who opposed the notion that financial incentives are the primary motivating factors for faculty to teach in DE programs.

Knowing what supports faculty participation will facilitate the implementation of new DE programs and expansion of current ones. Administrators need to understand their faculty population if they are to support faculty participation in DE.
Motivating and Inhibiting Factors

This case study took place at a large urban, research extensive university, with more than 25,000 students and 1,200 full-time faculty. Twenty percent (n = 263) of faculty and 44% (n = 11) of administrators returned completed and usable surveys for analysis. At the time of the survey, courses had been offered by DE for 4 years. The survey was adapted to address this university (e.g., specific items defining the institution and faculty, but not the motivating or inhibiting factor items) from a survey developed by Betts (1998) for her dissertation. This survey was appropriate because it specifically addressed the issues of motivating and inhibiting factors for faculty participation in DE and all items came from the DE literature to give face validity to the instrument. Betts’ dissertation (1998) quotes Cronbach Alpha reliability test data for the motivating factors as .9303 and for the inhibiting factors as .9475 (p. 104). While the survey addressed many issues related to faculty use of instructional technology in general, this chapter discusses only a factor analysis of the motivating and inhibiting factors, and an analysis of variance between faculty responses (DE participators and DE non-participants) and administrator responses to the survey instrument.

A factor analysis with varimax rotation of the 46 motivating and inhibiting items from the survey rendered four distinct and independent scales. It is important to note that all 46 items loaded into the four scales without any outliers or overlapping across scales. (For a list of the four scales, see Schifter, 2000.)

The development of these four scales was especially interesting. The strongest scale related to factors that were interpreted as intrinsic factors—those that come from within the individual and benefit the program or students (e.g., “improve teaching,” “greater flexibility for the students”). The second scale includes factors that are related to personal needs or gains for participation and cannot be interpreted as benefiting the program or students. The third scale contained all but two of the 17 inhibiting items. (i.e., “Lack of credit toward tenure and promotion” which loaded on Scale 2, and “Lack of technical background” which loaded on Scale 4.) The fourth and final scale included all factors relating to university administrative support and encouragement, or issues totally extrinsic to the faculty, programs and students.

Using the scales as a template, the ratings by both the faculty (participating and non-participating in DE course delivery) and administrators of the 29 motivating items were re-reviewed. The DE participating faculty rated highest only items in Scale 1 (intrinsic motives). The non-DE participating faculty rated highly items in Scale 1, but also rated second highest an item in Scale 4 (extrinsic motives). What is more interesting is that the administrators rated third items in Scale 2 (personal needs [e.g., related to monetary support, credit toward promotion and tenure, and release time]) as highly motivating for faculty. The administrators who responded to this survey seemed to believe that faculty are more motivated by things they could “get” by participating in DE efforts than factors that might be more beneficial to the program and students.

The means of each of the four scales and each set of items (motivating and inhibiting) were analyzed using an ANOVA to test for significant differences between levels of faculty participation in DE (participate, not participate). Significant differences were found for nine motivating (M) items and one inhibiting (I) item. Overall, faculty who participated in DE rated intrinsic motives higher, while non-participating faculty rated personal needs, inhibitors and extrinsic motives higher.

Using the mean scores for faculty responses only, an ANOVA was calculated for differences by gender, age, position level and tenure status in the individual factor item lists and/or the four scales. While there were some differences found for each variable set, a Chi-square post-hoc analysis showed that the differences were not statistically significant. However, some findings should be acknowledged. Differences in responses were found for women, faculty under the age of 30 years, faculty at the assistant professor or instructor level, and non-tenured faculty. Women seemed to be more motivated by extrinsic factors having to do with administrative support and encouragement for participation. Differences that were found for three faculty groups fitting the “junior faculty” definition (e.g., age, position level and tenure status) are not surprising. These faculty are most vulnerable when participating in DE, including the possibility of a negative effect on promotion and tenure at institutions that have promotion and tenure practices. Therefore, junior faculty, who may be more technology savvy and excited about DE, may be dissuaded from participating due to competing demands.
Related Content

Developing an Online Learning Style Instrument
[www.irma-international.org/chapter/developing-online-learning-style-instrument/12157/](www.irma-international.org/chapter/developing-online-learning-style-instrument/12157/)

A System for Governmental Virtual Institutions based on Ontologies and Interaction Protocols
Cláudia J. Abrão de Araújo and Flávio S. Corrêa da Silva (2012). *International Journal of Distance Education Technologies* (pp. 82-95).
[www.irma-international.org/article/system-governmental-virtual-institutions-based/73936/](www.irma-international.org/article/system-governmental-virtual-institutions-based/73936/)

An Empirical Study to Validate the Technology Acceptance Model in Explaining the Intention to Use Technology among Educational Users
[www.irma-international.org/chapter/empirical-study-validate-technology-acceptance/61252/](www.irma-international.org/chapter/empirical-study-validate-technology-acceptance/61252/)

Evaluating Learning Objects Across Boundaries: The Semantics of Localization
[www.irma-international.org/article/evaluating-learning-objects-across-boundaries/1667/](www.irma-international.org/article/evaluating-learning-objects-across-boundaries/1667/)

Cognitive Approaches to Understanding the Challenge of Computer-Based Learning
[www.irma-international.org/chapter/cognitive-approaches-understanding-challenge-computer/12113/](www.irma-international.org/chapter/cognitive-approaches-understanding-challenge-computer/12113/)