Chapter 2
The Role of Data Mining for Business Intelligence in Knowledge Management

Kijpokin Kasemsap
Suan Sunandha Rajabhat University, Thailand

ABSTRACT
This chapter introduces the role of Data Mining (DM) for Business Intelligence (BI) in Knowledge Management (KM), thus explaining the concept of KM, BI, and DM; the relationships among KM, BI, and DM; the practical applications of KM, BI, and DM; and the emerging trends toward practical results in KM, BI, and DM. In order to solve existing BI problems, this chapter also describes practical applications of KM, BI, and DM (in the fields of marketing, business, manufacturing, and human resources) and the emerging trends in KM, BI, and DM (in terms of larger databases, high dimensionality, over-fitting, evaluation of statistical significance, change of data and knowledge, missing data, relationships among DM fields, understandability of patterns, integration of other DM systems, and users' knowledge and interaction). Applying DM for BI in the KM environments will enhance organizational performance and achieve business goals in the digital age.

INTRODUCTION
Data is being collected and compiled in the global business environments. There is an urgent requirement for a new generation of computational theories and tools to assist humans in extracting useful information from the promptly growing volumes of digital data. DM is the process of applying these computational methods in showing unknown data formats in large data sets. The manual extraction of schemes in large data sets has been developed for centuries. The generation, pervasiveness and increasing power of computer technology has greatly increased data collection, data visualization, data storage, and data manipulation potentiality. As data sets have grown in size and involvement, direct data analysis has progressively been reinforced with indirect, automated data processing regarding computer science in terms of neural networks, cluster analysis, genetic algorithms, decision trees, and support vector machines. DM bridges the gap from applied sta-
Data mining (DM) is an important activity for gaining improved organizational performance (Sharma & Djiaw, 2011). BI consists of an energetic and continual set of processes and practices concerning organizational individuals, as well as in groups and organizational structures (Sharma & Djiaw, 2011). The Internet is absolutely a rich data repository for the information resources that enable people to solve problems by applying the results obtained from selective searches (Hua et al., 2012). BI is an important activity for gaining improved organizational performance (Sharma & Djiaw, 2011). BI is an important activity for gaining improved organizational performance (Sharma & Djiaw, 2011).

Kasemsap (2014a) stated that KM, strategic orientation, and organizational innovation have a strong impact on organizational performance in modern business. KM has become one of the most important management trends across the globe (Pandey & Dutta, 2013). Knowledge is considered as the most significant resource in organizations (Choe, 2004). KM is an influential ingredient for organizational success (Davenport & Prusak, 1998; Desouza & Awazu, 2006). KM is a systematic and integrative process of coordinating organization-wide activities of acquiring, creating, storing, sharing, diffusing, developing, and deploying knowledge by individuals and groups in the pursuit of major organizational goals (Rastogi, 2000). KM is aimed at getting people to innovate, collaborate, and make correct decisions efficiently (Plessis, 2005).

The novelties of this chapter indicate the integration of DM, BI, and KM; and the significance of DM and BI in the KM environments. This chapter contributes to the theoretical and practical insights of DM, BI, and KM; and the chances for a consideration on these meaningful issues to increase the understanding of utilizing DM in the context of BI in KM environments systematically suitable for scholars, researchers, technology de-
Related Content

A Novel Neural Fuzzy Network Using a Hybrid Evolutionary Learning Algorithm
[www.irma-international.org/chapter/novel-neural-fuzzy-network-using/42364/](www.irma-international.org/chapter/novel-neural-fuzzy-network-using/42364/)

Mobile Purchase Decision Support Systems for In-Store Shopping Environments
[www.irma-international.org/chapter/mobile-purchase-decision-support-systems/73499/](www.irma-international.org/chapter/mobile-purchase-decision-support-systems/73499/)

Social Media Analytics: An Application of Data Mining
Sunil Kr Pandey and Vineet Kansal (2013). *Data Mining in Dynamic Social Networks and Fuzzy Systems* (pp. 212-228).
[www.irma-international.org/chapter/social-media-analytics/77529/](www.irma-international.org/chapter/social-media-analytics/77529/)

A Parameterized Framework for Clustering Streams
[www.irma-international.org/article/parameterized-framework-clustering-streams/1822/](www.irma-international.org/article/parameterized-framework-clustering-streams/1822/)

Efficient Top-k Keyword Search Over Multidimensional Databases
[www.irma-international.org/article/efficient-top-keyword-search-over/78373/](www.irma-international.org/article/efficient-top-keyword-search-over/78373/)