
International Journal of Grid and High Performance Computing, 6(1), 1-20, January-March 2014 1

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
Dynamic Programming (DP) is an important and popular method for solving a wide variety of discrete op-
timization problems such as scheduling, string-editing, packaging, and inventory management. DP breaks
problems into simpler subproblems and combines their solutions into solutions to original ones. This paper
focuses on one type of dynamic programming called Nonserial Polyadic Dynamic Programming (NPDP). To
run NPDP applications efficiently on an emerging General-Purpose Graphic Processing Unit (GPGPU), the
authors have to exploit more parallelism to fully utilize the computing power of the hundreds of processing
units in it. However, the parallelism degree varies significantly in different phases of the NPDP applications.
To address the problem, the authors propose a method that can adjust the thread-level parallelism to provide
a sufficient and steadier parallelism degree for different phases. If a phase has insufficient parallelism, the
authors split threads into subthreads. On the other hand, the authors can limit the total number of threads in
a phase by merging threads. The authors also examine the difference between the conventional problem of
finding the minimum on a GPU and the NPDP-featured problem of finding the minimums of many indepen-
dent sets on a GPU. Finally, the authors examine how to design an appropriate data structure to apply the
memory coalescing optimization technique. The experimental results demonstrate our method can obtain the
best speedup of 13.40 over the algorithm published previously.

Adjusting Thread Parallelism
Dynamically to Accelerate

Dynamic Programming
with Irregular Workload
Distribution on GPGPUs

Chao-Chin Wu, National Changhua University of Education, Changhua, Taiwan

Jenn-Yang Ke, Tatung University, Taipei, Taiwan

Heshan Lin, Virginia Tech, Blacksburg, VA, USA

Syun-Sheng Jhan, Ling Tung University, Taichung, Taiwan

Keywords:	 Dynamic Programming, GPU, Optimization, Parallel Computing, Parallelism

DOI: 10.4018/ijghpc.2014010101

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

2 International Journal of Grid and High Performance Computing, 6(1), 1-20, January-March 2014

INTRODUCTION

Dynamic programming (DP) is a popular
method used to solve complex problems, includ-
ing scheduling, string-editing, packaging, and
inventory management (Grama, Gupta, Karypis
& Kumar, 2003). Since it is believed DP will
remain important into the future for science and
engineering, it is one of Berkeley’s 13 dwarfs,
where a dwarf is defined as an algorithmic
method capturing a pattern of computation
and communication for a class of applications
(Asanovic et al., 2006). The solution to a DP
problem is usually expressed as a minimum (or
maximum) of all possible alternate solutions.
Dynamic programming can be classified into
four categories based on the following two cri-
teria (Grama, Gupta, Karypis, & Kumar, 2003).
(1) If solutions to problems in a phase depend
only on solutions to problems at the previous
level, the dynamic programming is called se-
rial, otherwise it is termed non-serial. (2) If the
right hand side of the optimization equation
contains only one recursive term, the dynamic
programming is called monadic. Otherwise,
it is termed polyadic. The four categories are
(1) serial-monadic, used in the single source
shortest path and 0/1 knapsack problems, (2)
non-serial-monadic, used in the longest common
subsequence problem and the Smith-Waterman
algorithm (Smith & Waterman, 1981), (3) serial-
polyadic, used in Floyd all pairs shortest paths
problem, and (4) non-serial-polyadic, used in
the Optimal Matrix Parenthesization problem
(Hafeez & Younus, 2007; Lee, Kim, Hong &
Lee, 2003) and the Zuker algorithm (Lyngso &
Zuker, 1999; Tan, Sun & Gao, 2009).

Recently, many efforts have examined
how to map the DP problems onto emerging
graphics processing units (GPUs). The modern
GPU is not only a powerful graphics engine, but
also a highly parallel programmable processor
(Nickolls & Dally, 2010). Today’s GPUs use
hundreds of parallel processor cores executing
tens of thousands of parallel threads to rapidly
solve large problems and they are now available
in many PCs, laptops, workstations, and super-
computers. However, because the architecture
and programming of the GPU are quite different

from most other commodity single-chip proces-
sors, implementing parallel algorithms on GPUs
requires different optimization techniques. For
instance, CUDA (an acronym for Compute
Unified Device Architecture) is a hardware
and software coprocessing architecture for
parallel computing enabling NVIDIA GPUs to
execute programs written with C, C++, Fortran,
OpenCL, DirectCompute, and other languages
(CUDA, 2012).

Due to the wide variety of problems solved
using DP, it is difficult to develop generic paral-
lel algorithms for them on GPUs. In this work,
we focus on the non-serial-polyadic DP ap-
pearing in the Optimal Matrix Parenthesization
problem. There are two distinct features which
make a difference between non-serial-polyadic
DP and the other three DP problems (Tan, Sun
& Gao, 2009). First, the DP matrix for non-
serial-polyadic DP is triangular, as opposed
to being rectangular as in other DP problems,
where the DP matrix is used to show all data
dependence occurring during the computation.
The property makes the optimization of memory
accesses and load balancing difficult. Second,
data dependence in non-serial-polyadic DP is
dynamic, where the data dependence appears
among nonconsecutive levels and the number of
dependent elements varies for each subproblem.

There are two methods proposed that map
the non-serial polyadic DP problems onto GPUs
(Solomon & Thulasiraman, 2010; Rizk & Lave-
nier, 2009). The two methods mentioned above
suffer from the following two problems. First,
the number of threads created in part of phases
cannot provide sufficient parallelism to fully
utilize the massive parallel computing power
of a GPU because each subproblem is executed
by a thread. Second, finding the optimal cost
for each subproblem is computed by only one
thread, resulting in long execution time. To
address these two problems, we propose an
algorithm that can adjust the number of threads
dynamically to fully utilize all the computing
power in a GPU.

In our proposed algorithm, when we require
more parallelism, a thread for each subproblem
is split into multiple subthreads which together
execute a parallel reduction algorithm to find

18 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/adjusting-thread-parallelism-dynamically-

to-accelerate-dynamic-programming-with-irregular-workload-

distribution-on-gpgpus/114710

Related Content

Migrating Android Applications to the Cloud
Shih-Hao Hung, Jeng-Peng Shiehand Chen-Pang Lee (2012). Grid and Cloud

Computing: Concepts, Methodologies, Tools and Applications (pp. 993-1008).

www.irma-international.org/chapter/migrating-android-applications-cloud/64526

IFACS-Q3S-- A New Admission Control System for 5G Wireless Networks

Based on Fuzzy Logic and Its Performance Evaluation
Phudit Ampririt, Ermioni Qafzezi, Kevin Bylykbashi, Makoto Ikeda, Keita Matsuoand

Leonard Barolli (2022). International Journal of Distributed Systems and

Technologies (pp. 1-25).

www.irma-international.org/article/ifacs-q3s---a-new-admission-control-system-for-5g-wireless-

networks-based-on-fuzzy-logic-and-its-performance-evaluation/300339

Exploring Vectorization and Prefetching Techniques on Scientific Kernels

and Inferring the Cache Performance Metrics
J. Saira Banuand M. Rajasekhara Babu (2015). International Journal of Grid and High

Performance Computing (pp. 18-36).

www.irma-international.org/article/exploring-vectorization-and-prefetching-techniques-on-

scientific-kernels-and-inferring-the-cache-performance-metrics/136814

Credential Management Enforcement and Secure Data Storage in gLite
Francesco Tusa, Massimo Villariand Antonio Puliafito (2012). Technology Integration

Advancements in Distributed Systems and Computing (pp. 229-251).

www.irma-international.org/chapter/credential-management-enforcement-secure-data/64451

Deterministic Concept Drift Detection in Ensemble Classifier Based Data

Stream Classification Process
Mohammed Ahmed Ali Abdualrhmanand M C. Padma (2019). International Journal of

Grid and High Performance Computing (pp. 29-48).

www.irma-international.org/article/deterministic-concept-drift-detection-in-ensemble-classifier-

based-data-stream-classification-process/216480

http://www.igi-global.com/article/adjusting-thread-parallelism-dynamically-to-accelerate-dynamic-programming-with-irregular-workload-distribution-on-gpgpus/114710
http://www.igi-global.com/article/adjusting-thread-parallelism-dynamically-to-accelerate-dynamic-programming-with-irregular-workload-distribution-on-gpgpus/114710
http://www.igi-global.com/article/adjusting-thread-parallelism-dynamically-to-accelerate-dynamic-programming-with-irregular-workload-distribution-on-gpgpus/114710
http://www.igi-global.com/article/adjusting-thread-parallelism-dynamically-to-accelerate-dynamic-programming-with-irregular-workload-distribution-on-gpgpus/114710
http://www.irma-international.org/chapter/migrating-android-applications-cloud/64526
http://www.irma-international.org/article/ifacs-q3s---a-new-admission-control-system-for-5g-wireless-networks-based-on-fuzzy-logic-and-its-performance-evaluation/300339
http://www.irma-international.org/article/ifacs-q3s---a-new-admission-control-system-for-5g-wireless-networks-based-on-fuzzy-logic-and-its-performance-evaluation/300339
http://www.irma-international.org/article/exploring-vectorization-and-prefetching-techniques-on-scientific-kernels-and-inferring-the-cache-performance-metrics/136814
http://www.irma-international.org/article/exploring-vectorization-and-prefetching-techniques-on-scientific-kernels-and-inferring-the-cache-performance-metrics/136814
http://www.irma-international.org/chapter/credential-management-enforcement-secure-data/64451
http://www.irma-international.org/article/deterministic-concept-drift-detection-in-ensemble-classifier-based-data-stream-classification-process/216480
http://www.irma-international.org/article/deterministic-concept-drift-detection-in-ensemble-classifier-based-data-stream-classification-process/216480

