
 M

5887

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Multimedia Technology

DOI: 10.4018/978-1-4666-5888-2.ch582

Direct Execution of Design Patterns

1. INTRODUCTION

Patterns occur in almost every aspect of life and scien-
tific discipline. Considering the biological structure of
living things, the most striking aspect is the fact that
there is an external shell, which is in contact with the
outside through a porous skin of some type, covering
a very detailed internal structure with organs specific
to certain functions. This pattern occurs in essentially
all living things in many different species-specific
formations. In science, all theories essentially try to
explain or predict certain phenomena based on patterns
observed; some expressed by mathematical formulae,
which themselves are patterns following mathematical
rules. Another area where patterns are vital is com-
munication, where patterns are described by message
formats, syntax and semantics of the language of the
messages. Finally, designers and programmers use
diagrams based on specific diagram patterns, such as
flowcharts, UML and many others.

The subject of our study, namely architectural pat-
terns and design patterns, was initiated as a follow-on
to the work of Christopher Alexander, a construction
architect, who invented these patterns to describe build-
ings and created a design pattern language (Alexander,
1977). Patterns have been used very widely to describe
architectural styles, pre-fabricated housing, industrial
products and processes. The term “architectural pat-
tern” refers to patterns depicting overall structures of
systems. The term “design pattern” refers to design
of components of the architectural pattern. We shall
sometimes use the term “patterns” to refer to both
kinds of patterns.

When examine the history of programming lan-
guages, we see that initial symbolic languages contained
instruction formats, which are essentially patterns,
following the structure of CPU hardware commands,
which are converted into machine language on a one-
to-one basis by translators called assemblers. These
were followed by macro-assemblers capable of trans-

lating named sets of instructions into machine code.
Then came the so-called higher-level languages, with
detailed syntax patterns, and semantic specifications.
One characteristic of the latter is that instructions can
contain other nested instructions inside them, creating
loop patterns, flow control patterns and other patterns.

Thus, a programmer’s job is essentially using the
instruction patterns available in the language he is us-
ing to create instruction patterns which will perform
the required functions. These instructions are designed
to be as complementary to other instructions as pos-
sible so that one instruction can process the results of
another. Programming language instructions can be
thought of as micro-patterns which can be combined
to create progressively higher-level patterns, which are
the subject of our study.

2. BACKGROUND

A major exposition of software patterns was made
in “Elements of Reusable Object-oriented Software”
(Gamma, Helm, Johnson & Vlissides,. 1994) con-
taining a pattern catalog with structured explanations
and examples of usage of each type. This catalog also
classified design patterns into three generic groups:

1. 	 Creational Patterns,
2. 	 Structural Patterns,
3. 	 Behavioural Patterns.

Another useful paper in this area is (Buschmann,
Meunie, Rohnert, Sommerland & Stal, 1996).

Efforts have been made to formalize and model
pattern diagrams and descriptions to make them more
rigorously definable which may be conceptually useful
in our approach as well (Eden, 2011).

Software design patterns area has also been ap-
proached with a view towards “componentization.” Ori-
gins of this approach may be traced to the now-classic

Birol Aygün
Yeditepe University, Turkey

Category: Multimedia Technology

 M

Direct Execution of Design Patterns

5888

paper “Trusted Components for Software Industry” (B.
Meyer et al., Eiffel Software” http://archive.eiffel.com/
doc/manuals/technology/bmarticles/computer/trusted/
page.html, accessed on 13/11/2013), emphasizing
the inadequacy of commonly suggested approaches
for developing reliable software and arguing that in
order to be able to write reliable software, software
developers need reliable components they can use.
This work was followed by Karine Arnout, a doctoral
student of B. Meyer, whose PhD thesis titled “From
Patterns to Components” (Arnout, 2004) emphasized
the need to make software design patterns reliable
components. In her thesis Arnout defined a software
component as follows:

... software component is a reusable module with the
following supplementary properties:
•	 It can be used by other modules (its “clients”).
•	 The supplier of a component does not need to

know who its clients are.
•	 Clients can use a component on the sole basis

of its official information.

Arnaout’s thesis was followed by two papers on
componentization: Factory design pattern (Pattern
Componentization: The Factory Example, Arnaut,K.,
Meyer, B. 2006) and the Visitor design pattern (Compo-
nentization: The Visitor Example” Meyer, B., Arnaut,
K. 2006) giving additional details on how componenti-
zation should be performed and the evaluation criteria
a component should meet.

Another more recent and useful work on use of
design patterns in software components is that of Petr
Stepan (Stepan, P. 2011) emphasizing use of design
patterns as explicit, rather than implicit, artifacts in
software development.

An approach to increase actual code re-use through
software components was proposed in “(Behavioural)
Design Patterns as Composition Operators, Kung-Kiu
Lau et al, 2010” suggesting the inclusion of software
design pattern code in software repositories along with
other software components. A published industrial
implementation of a specific design pattern is Matilda,
in which code was written using the Pipes and Filters
architectural pattern (Wada et al., 2010).

Another source of work on usage of design pat-
terns is Java Design Pattern Framework developers
(http://java-source.net/open-source/j2ee-frameworks/

dinamica-framework, accessed on 3/12/2013). It pro-
vides some examples of design patterns implemented
in Java, such as the Dinamica framework which permits
usage of the MVC pattern by application.

An important consideration in the software devel-
opment life cycle is making sure that software meets
requirements. Traditionally, requirements have been
divided into functional requirements and non-functional
requirements. Further, certain aspects of these require-
ments have been designated as “concerns,” and the term
“separation of concerns” has been used to highlight
the need to address the concerns as independently as
possible (Dijkstra, E.W. 1982). Work has been done to
structure “connectors” between requirement statements
so that they can be mapped to architectural and design
patterns (Gross, D. & Yu, E. 2001).

3. PROPOSAL FOR A
NEW APPROACH

If a programmer can find a resemblance between a
given problem and a problem pattern he is familiar with,
he tries to re-structure the problem to fit that pattern,
which we can call the “deductive step.” If he feels that
there is a good fit, he tries to break the problem into
subproblems and repeats the above process until he
feels he can start to implement some of the resulting
parts, which we can call the “inductive step.” If the
deductive step is not useful, he tries to find another
pattern he is familiar with. If successful he repeats the
above steps for those subproblems.

If he cannot find a good match between the problem
and the problem patterns he is familiar with, he tries
(i) a higher level solution pattern, such as divide-and-
conquer, and repeatedly applying the above approach
to each of the resulting parts recursively, or (ii) he picks
one of the patterns he found so far hoping that he can
inductively create a solution using his existing bag of
solutions. If a suitable pattern cannot be found, a new
solution may be developed and stored as a new pattern.

A new type of “virtual machine” called a Pattern
Machine (PM) which can help users develop their
programs using existing patterns more effectively is
proposed. The PM will include not only patterns but
a rich framework, outlined below, to provide as much
advantage as possible to the user based on a detailed
knowledge of patterns stored in the PM. We can think

8 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/direct-execution-of-design-patterns/113046

Related Content

BitTrace: A Data-Driven Framework for Traceability of Blockchain Forming in Bitcoin System
Jian Wu, Jianhui Zhangand Li Pan (2024). International Journal of Information Technologies and Systems

Approach (pp. 1-21).

www.irma-international.org/article/bittrace/339003

A Study of Knowledge Discovery and Pattern Recognition Based on Large-Scale Sentiment

Data in Online Education for College Students
Guoliang Li, Bing Wangand Maoyin You (2023). International Journal of Information Technologies and

Systems Approach (pp. 1-13).

www.irma-international.org/article/a-study-of-knowledge-discovery-and-pattern-recognition-based-on-large-scale-

sentiment-data-in-online-education-for-college-students/323194

Heidegger’s Notion of Befindlichkeit and the Meaning of “Situated” in Social Inquiries
Kenneth Liberman (2012). Phenomenology, Organizational Politics, and IT Design: The Social Study of

Information Systems (pp. 47-55).

www.irma-international.org/chapter/heidegger-notion-befindlichkeit-meaning-situated/64676

Centrality Analysis of the United States Network Graph
Natarajan Meghanathan (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

1746-1756).

www.irma-international.org/chapter/centrality-analysis-of-the-united-states-network-graph/183891

The Yin and Yang of 4chan's Nature
William Stanley Pendergrass (2015). Encyclopedia of Information Science and Technology, Third Edition

(pp. 6810-6817).

www.irma-international.org/chapter/the-yin-and-yang-of-4chans-nature/113145

http://www.igi-global.com/chapter/direct-execution-of-design-patterns/113046
http://www.irma-international.org/article/bittrace/339003
http://www.irma-international.org/article/a-study-of-knowledge-discovery-and-pattern-recognition-based-on-large-scale-sentiment-data-in-online-education-for-college-students/323194
http://www.irma-international.org/article/a-study-of-knowledge-discovery-and-pattern-recognition-based-on-large-scale-sentiment-data-in-online-education-for-college-students/323194
http://www.irma-international.org/chapter/heidegger-notion-befindlichkeit-meaning-situated/64676
http://www.irma-international.org/chapter/centrality-analysis-of-the-united-states-network-graph/183891
http://www.irma-international.org/chapter/the-yin-and-yang-of-4chans-nature/113145

