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INTRODUCTION

Computer models can be broadly categorized as de-
terministic or stochastic. Deterministic models output 
the same predictions for the same inputs. Stochastic 
models output different predictions for the same inputs. 
Our focus is stochastic computer models (SM), and 
in particular, on a new option to calibrate SMs using 
approximate Bayesian computation (ABC).

An example used later in this article is a SM to 
model neuronal loss in a region of the human brain 
that is associated with Parkinson’s disease. Deletion 
mutations in the mitochondrial DNA (mtDNA) in that 
brain region are observed to accumulate with age. A 
deletion mutation converts a healthy copy of mtDNA to 
the mutant (unhealthy) variant. The number of mutant 
copies in cases with Parkinson’s disease tends to be 
higher than in controls without Parkinson’s disease. 
The role that mtDNA deletions play in neuronal loss 
is not yet fully understood, so better understanding of 
how mtDNA deletions accumulate is an area of active 
research. Henderson et al. (2009) use a simple SM that 
allows for any of five reactions, occurring at rates to be 
estimates. The five reactions are mutation, synthesis, 
degradation, mutant synthesis, and mutant degradation.

Approximate Bayesian computation (ABC) is an ap-
proach for using data to calibrate a SM and is especially 
useful when the likelihood for the data is unknown or 
intractable. ABC requires a set of summary statistics 
computed from real data. Then, the same set of sum-
mary statistics is computed from the SM for each of 
many candidate model parameter values. In a parameter 
acceptance/rejection loop, the candidate SM parameter 
values that are accepted provide an approximation to 
the posterior distribution of model parameters given 
the summary statistics computed from the real data. 

In a nutshell, ABC favors model parameters for which 
simulated summary statistics roughly agree with the 
corresponding summary statistics computed from the 
observed data. Because ABC relies on user-chosen 
summary statistics rather than on full data, it becomes 
computationally feasible. ABC is therefore appealing 
when the data dimension and/or parameter dimension 
is large.

This article describes applications of ABC and 
illustrates the challenges with ABC related to the qual-
ity of the approximation to the posterior distribution 
of model parameters. The challenges involve the fact 
that the user must choose (1) summary statistics, (2) 
a distance measure to calculate the distance between 
summary statistics in the real data and in the model-
simulated data, and (3) the acceptance threshold used 
to accept or reject candidate parameter values in the 
acceptance/rejection sampling loop.

For a model with parameters θ and data D, a key 
quantity in Bayesian inference is the posterior distribu-
tion of model parameters given by Bayes theorem as
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is the marginal probability of the data that is used to 
normalize the posterior probability p D

post
( | )θ to 

integrate to 1 (Aitken, 2010). The likelihood p D( | )θ
can be regarded as the “data model” for a given value 
of θ. Alternatively, when the data D is considered fixed, 
p D( | )θ is regarded as a function of θ, and non-
Bayesian methods such as maximum likelihood find 
the value of θ that maximizes p D( | )θ (Aitken, 2010). 

In many applications, the data model p D( | )θ is 
computationally intractable but can be implemented 
in a stochastic model (SM); thus, many realizations 
from p D( | )θ are available by running the model many 
times at each of many trial values of θ. In a bioinfor-
matics example, Tavaré et al. (1997) considered the 
classic problem of inferring the time to the most recent 
common ancestor of a random sample of n DNA se-
quences. The full likelihood of the data D involves the 
branching order and branch lengths, which is known 
to be computationally intractable because the number 
of possible branching orders of a sample of n DNA 
sequences grows approximately as n!. Tavaré et al. 
greatly facilitated the analysis by replacing D with the 
number of segregating sites (a segregating site exhib-
its variation in the DNA character across the sample) 
Sn in the sample of n sequences. The key simplification 
was that the distribution of Sn does not depend on the 
branching order or individual branch lengths, but 
rather on the total length of the phylogenetic tree, which 
is the sum of all branch lengths. One question that 
illustrates this article’s focus is—how effective is such 
replacement of original data D with Sn for estimating 
the posterior distribution of the time to the most recent 
common ancestor of the sample? This situation is 
typical of many biology and epidemiology applications 
in that an unknown tree structure (such as the evolu-
tionary tree relating species or the transmission tree 
in a disease outbreak chain) is involved, the likelihood 
of which is complicated or intractable. This article 
describes applications of ABC and illustrates chal-
lenges with ABC related to the quality of the ap-
proximation to the posterior distribution of model 
parameters, such as the choice of effective summary 
statistics, a distance measure, and an acceptance 
threshold.

In the contexts of interest here, the SM provides 
the data generation mechanism, so no explicit func-
tional form exists for p D( | )θ . Likelihood-free infer-
ence dates to at least Diggle and Gratton (1984), but 

the name ABC originated in Beaumont et al. (2002), 
when they referred to an approach to likelihood-free 
inference methods. Effective values of input parameters 
for stochastic computer models are typically chosen 
by some type of comparison to measured data. The 
numerically intense loop is often Markov Chain 
Monte Carlo (MCMC), which is a method used to 
simulate observations from the posterior distribution 
of model parameters (Aitken, 2010). Parameter estima-
tion for stochastic models for which an explicit likeli-
hood is not available is most commonly done using 
ABC. For examples of ABC applied to calibrate SMs, 
see Marjoram et al. (2003), Tanaka et al. (2006), Joyce 
and Marjoram (2008), Wegman et al. (2009), Csillery 
et al. (2010), Blum (2010), Beaumont (2010), Nunes 
and Balding (2010), Toni and Stumpf (2010), Robert 
et al. (2011), Fearnhead and Prangle (2012), Blum et 
al. (2013), Burr and Skurikhin (2013), and Weyant et 
al. (2013).

The following sections provide background on 
ABC and then describe the challenges in ABC related 
to choosing effective summary statistics, a distance 
measure, and an acceptance threshold. We describe 
current ABC research that addresses the challenges.

BACKGROUND

In this article, we assume that the SM provides the 
data generation mechanism, so no explicit functional 
form exists for p D( | )θ . Effective values of input 
parameters for SMs are typically chosen by some type 
of comparison to measured data. To avoid possible 
confusion, we note here that parameter estimation for 
deterministic models is frequently done by running 
the model at multiple values of the input parameters, 
constructing an approximator to the model, and using 
the approximator inside a numerically intense loop 
that examines many trial values for the input param-
eters (Marjoram et al., 2003; Csillery et al., 2010; 
Blum, 2010; Toni and Stumpf, 2010; and Beaumont, 
2012). The numerically intense loop is often MCMC, 
which is a method used to simulate observations from 
the posterior distribution of model parameters (Aitken, 
2010; and Toni and Stumpf, 2010). Parameter estima-
tion for SMs for which an explicit likelihood is not 
available has been attempted at least once using MCMC 
with a model approximator but is far more commonly 
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