
 W

7651

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Web Technologies

DOI: 10.4018/978-1-4666-5888-2.ch754

Schema Versioning

INTRODUCTION

Persistent information and data-centric systems use
databases to store data. The contents of a database must
adhere to a formal structure that is fixed in advance,
and is called the schema of the database (Date, 2003).
In those systems, not only data changes are obvious
tasks done almost every day but also schema changes
are unavoidable, in order to reflect a change in the real
world or in the user’s requirements, to correct mistakes
in the initial design, to migrate to a new platform or
to allow the expansion of the application scope over
time. Two main problems have to be considered
when dealing with any schema change: semantics of
change (i.e., the effects of the change on the schema
itself) and change propagation (i.e., the effects of the
change on the underlying data). Resolving the former
guarantees schema consistency, while resolving the
latter guarantees consistency of data with respect to
the changed schema.

In the literature, schema evolution and schema
versioning (Roddick, 1995; Jensen et al., 1998) are the
two techniques that were proposed to support schema
changes in a DBMS, without loss of extant data and
with continued support of legacy applications. After
applying schema changes, schema evolution keeps only
the current schema version and retains the data which
are adapted to such a schema. On the other hand, each
time schema changes are applied, schema versioning
creates a new schema version, while preserving old

schema versions and their corresponding data. With
schema versioning, data access through any schema
version is supported, which avoids applications devel-
oped with past schemata to become obsolete.

Schema versioning has been widely investigated,
both in the context of traditional and temporal database
research. Several models, languages and approaches,
dealing with schema versioning, have been proposed
during the two last decades. However, to the best of
our knowledge, limited support of schema changes
and no support of schema versioning is provided by
commercial database management systems (DBMS).
Therefore, diligent database designers and administra-
tors have to work hard to solve the problem of evolving
a database schema in an ad hoc manner. Besides, with
the growing interest in XML adopted as a data modeling
language and storage format, research work has also
recently done on the problems of schema versioning
in XML databases.

The main goal of this article is (1) to present the dif-
ferent research proposals dealing with schema version-
ing, and (2) to discuss the support provided by available
DBMSs to manage schema versioning. In particular,
the next section gives some basic definitions related
to the considered subject. In “Current Research in
Schema Versioning,” we present the different research
proposals on schema versioning. “DBMS Support for
Schema Versioning” surveys the support of schema
versioning in existing DBMSs. Finally, future work
directions and conclusion are provided.

Zouhaier Brahmia
University of Sfax, Tunisia

Fabio Grandi
University of Bologna, Italy

Barbara Oliboni
University of Verona, Italy

Rafik Bouaziz
University of Sfax, Tunisia

Category: Web Technologies

 W

Schema Versioning

7652

BACKGROUND

The schema versioning technique allows changes to
the database schema with continued support of previ-
ous schemata and their corresponding data, which
are retained without any change. The newly created
schema version is (usually) used to accommodate
new data insertions, modifications and deletions. This
technique neither leads to loss of information nor to
obsolescence of existing applications, as they can still
work with old schema versions.

In a schema versioning environment, two related
issues are involved: (1) compatibility between schema
versions and applications and (2) data access facilities.

As far as the first issue is concerned, we distin-
guish between backward compatibility and forward
compatibility. Backward compatibility means that
data defined under the previous schema version can
be processed by an application designed for the new
schema version, whereas forward compatibility means
that data introduced under a new schema version can
be processed by an application designed for a previous
schema version.

As for data access facilities, we distinguish between
transparent data access facilities and explicit data ac-
cess facilities. Transparent data access facilities do not
explicitly consider schema versions for accessing data:
a “completed schema” compatible with all the different
schema versions (i.e., similar to a “Global-As-View”
integration schema) is used for accessing data defined
under any schema version in a transparent way. On the
contrary, explicit data access must refer to versions.
Thus, existing database query languages (e.g., SQL)
have to be extended by new schema selection features
(e.g., based on schema version number, schema ver-
sion creation time, schema version interval) to allow
users to access data defined under the desired schema
version(s).

Furthermore, the most used solutions for perform-
ing schema versioning are: sequential revisions and
parallel variants (Munch, 1993). With the former,
each new schema version is created by modifying the
last schema version; we always have only one current
schema version and a set of past schema versions.
With the latter, a new schema version (or a variant)
does not replace another, but becomes an alternative
to the modified version instead; thus, multiple current
schema versions could exist, which derive from a com-
mon previous schema version.

On the other hand, the storage of schema versions
could be achieved by one of the two following solu-
tions: either versioning by difference or versioning by
copy (Loomis, 1995). In versioning by difference, the
new schema version contains only the changed parts
of the initial schema. In versioning by copy, the new
schema version contains both the changed parts and
the parts that have not changed of the initial schema.

Although it is the most powerful and flexible tech-
nique for managing schema changes, schema versioning
is not supported by any commercial DBMS yet.

In order to illustrate the effects of schema version-
ing, let us assume that we have a relational database that
contains only an AUTHOR relation with the attributes
ID (primary key), NAME, PHONE, and COUNTRY.
The first state of this database is as shown in Figure 1.

The catalogues store information on the schema
S1 of the AUTHOR relation. The table AUTHOR
contains two tuples for two authors. Then consider the
following schema changes:

ALTER TABLE AUTHOR
DROP COLUMN PHONE;
ALTER TABLE AUTHOR
ADD COLUMN EMAIL CHAR(30);

Figure 1.

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/schema-versioning/112468

Related Content

Hindi Text Document Classification System Using SVM and Fuzzy: A Survey
Shalini Puriand Satya Prakash Singh (2018). International Journal of Rough Sets and Data Analysis (pp. 1-

31).

www.irma-international.org/article/hindi-text-document-classification-system-using-svm-and-fuzzy/214966

Design-Type Research in Information Systems
 (2012). Design-Type Research in Information Systems: Findings and Practices (pp. 94-114).

www.irma-international.org/chapter/design-type-research-information-systems/63107

An Optimal Policy with Three-Parameter Weibull Distribution Deterioration, Quadratic Demand,

and Salvage Value Under Partial Backlogging
Trailokyanath Singh, Hadibandhu Pattanayak, Ameeya Kumar Nayakand Nirakar Niranjan Sethy (2018).

International Journal of Rough Sets and Data Analysis (pp. 79-98).

www.irma-international.org/article/an-optimal-policy-with-three-parameter-weibull-distribution-deterioration-quadratic-

demand-and-salvage-value-under-partial-backlogging/190892

Cryptanalysis and Improvement of a Digital Watermarking Scheme Using Chaotic Map
Musheer Ahmadand Hamed D. AlSharari (2018). International Journal of Rough Sets and Data Analysis

(pp. 61-73).

www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-

map/214969

Cognitive Communications
F. Benedetto (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 6143-6151).

www.irma-international.org/chapter/cognitive-communications/113071

http://www.igi-global.com/chapter/schema-versioning/112468
http://www.irma-international.org/article/hindi-text-document-classification-system-using-svm-and-fuzzy/214966
http://www.irma-international.org/chapter/design-type-research-information-systems/63107
http://www.irma-international.org/article/an-optimal-policy-with-three-parameter-weibull-distribution-deterioration-quadratic-demand-and-salvage-value-under-partial-backlogging/190892
http://www.irma-international.org/article/an-optimal-policy-with-three-parameter-weibull-distribution-deterioration-quadratic-demand-and-salvage-value-under-partial-backlogging/190892
http://www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-map/214969
http://www.irma-international.org/article/cryptanalysis-and-improvement-of-a-digital-watermarking-scheme-using-chaotic-map/214969
http://www.irma-international.org/chapter/cognitive-communications/113071

