
 S

7347

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software Engineering

DOI: 10.4018/978-1-4666-5888-2.ch723

Software Modernization and the 
State-of-the-Art and Challenges

INTRODUCTION

Software modernization, understood as technological 
and functional evolution of legacy systems, provides 
principles, methods, techniques and tools to support 
the transformation from an existing software system 
to a new one that satisfies new requirements.

Modernization is related to different processes 
such as migration, software refactoring, architecture 
restructuring, and mainly reverse engineering. Reverse 
engineering techniques allow supporting an integral 
part of the software modernization, specifically, the 
process of analyzing available software artifacts such 
as requirements, design, architectures, code or byte 
code, with the objective of extracting information and 
providing high-level views on the underlying system. 
Thus, software modernization starts from an existing 
implementation and requires an evaluation of every part 
of the system that could be transformed or implemented 
anew from scratch. Reverse engineering involves (re)
discovering the functional, structural and behavioral 
semantics of a given artifact in order to document, 
maintain, improve or migrate them (Canfora & Di 
Penta, 2007).

Software modernization requires new technical 
frameworks for information integration and tool in-
teroperation such as the Model Driven Development 
(MDD). MDD refers to a range of development ap-
proaches based on the use of software models as first-
class entities. The most well-known realization of MDD 
is the OMG standard Model Driven Architecture (MDA) 
(MDA, 2013). The outstanding ideas behind MDA are 
separating the specification of the system functionality 

from its implementation on specific platforms, man-
aging the software evolution from abstract models to 
implementations increasing the degree of automation 
of model transformations and achieving interoperability 
with multiple platforms, programming languages and 
formal languages. The essence of MDA is the Meta 
Object Facility Metamodel (MOF) that allows differ-
ent kinds of software artifacts to be used together in a 
single project (MOF, 2011). Models play a major role 
in MDA which distinguishes Computation Independent 
Model (CIM), Platform Independent Model (PIM) and 
Platform Specific Model (PSM). Some authors also 
distinguish Implementation Specific Model (ISM) as a 
description (specification) of the system in source code. 
To express transformations, OMG defined the MOF 
2.0 Query, View, Transformation (QVT) metamodel 
(QVT, 2011).

Software modernization can be summarized as fol-
lows. First, information is extracted out of the system 
artifacts. Second, this information is analyzed in order 
to take adequate modernization decisions and finally, 
the information must be transformed to new artifacts. 
These steps are supported by metamodels to describe 
existing systems, discoverers to automatically create 
models of these systems and, tools to understand and 
transform complex models created out of existing sys-
tems. OMG is involved in the definition of standards to 
successfully modernize existing information systems. 
In this direction, OMG Architecture-Driven Modern-
ization Task Force (ADMTF) is developing a set of 
specifications and promoting industry consensus on 
modernization of existing applications (ADM, 2012).

Liliana Favre
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Claudia Pereira
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Liliana Martinez
Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina



 S

Category: Systems and Software EngineeringSoftware Modernization and the State-of-the-Art and Challenges

7348

This article analyzes ADM-based software mod-
ernization. It provides an overview of the-state-of-
the-art in reverse engineering techniques and software 
modernization techniques. Taxonomy of different 
techniques is described. We describe how traditional 
techniques such as static and dynamic analysis can be 
integrated with ADM standards playing a central role 
in the evolution of software. Foundations of ADM 
CASE tools to develop industrial size software are 
analyzed. Finally, challenges and strategic directions 
in software modernization are included.

BACKGROUND

25 years ago, modernization focused mainly on reverse 
engineering for recovering high-level architectures or 
diagrams from procedural code to face up with problems 
such as comprehending data structures or databases or 
the Y2K problem.

Many works had contributed to reverse engineering 
object-oriented code. Muller, Jahnke, Smith, Storey, 
Tilley, and Wong (2000) present a roadmap for reverse 
engineering research for the first decade of the 2000s. 
Fanta and Rajlich (1998) describe the reengineering of a 
deteriorated object-oriented industrial program written 
in C++. Systa (2000) describes an experimental envi-
ronment to reverse engineer JAVA software integrating 
dynamic and static information. Demeyer, Ducasse, and 
Nierstrasz (2002) distinguish a variety of techniques 
for object-oriented reengineering based on patterns.

When the Unified Modeling Language (UML) 
(UML, 2011) emerged, a new problem was how to 
extract higher-level views of the system expressed by 
different kind of UML diagrams. The diagrams that 
could be reverse-engineered in this way were partial. 
A new challenge was how to identify different relation-
ships (e.g. dependency, association, aggregation and 
composition). Canfora and Di Penta (2007) present 
a relevant survey that compares existing work in the 
reverse engineering area, discuss success stories and 
main achievements, and provide a road map for pos-
sible future developments in this area. Fleurey, Breton, 
Baudry, Nicolas, and Jézéquel (2007) report on the 
use of MDE as an efficient, flexible and reliable ap-
proach for a software migration process. The described 
process, developed at Sodifrance, includes automatic 
analysis of the existing code, reverse engineering of 

abstract high-level models, model transformation to 
target platform models and code generation.

Other related work is specifically linked to ADM. 
For example, Cánovas Izquierdo and García Molina 
(2009) present a process to extract models that conform 
to ADM standards such as the Knowledge Discovery 
Metamodel (KDM) and the Abstract Syntax Tree 
Metamodel (ASTM) (KDM, 2012) (ASTM, 2011).

Barbier, Deltombe, Parisy, and Youbi (2011) 
describe a model driven reverse engineering method 
based on metamodeling and model transformation. The 
method was implemented in the BLU AGE® Reverse 
module, an Eclipse IDE plugin. In this approach, a 
textual DSL is constructed to later describe source code 
as formal KDM models. Next, these KDM models are 
transformed to UML PIMs. Authors generalize this 
method by extending KDM along with an implementa-
tion of the ASTM. Authors state that the link between 
KDM and ASTM is not clear even confusing.

Many CASE tools support reverse engineering, 
however, they only use more basic notational features 
with a direct code representation and produce very 
large diagrams (CASE MDA, 2012). The Eclipse-
MDT MoDisco open source project is considered by 
ADMTF as the reference provider for implementations 
of several of its standards. It is a reusable and extensible 
model-based framework that facilitates the construction 
of reverse engineering applications (MoDisco, 2012).

Few MDA-based CASE tools support any of the 
QVT languages. As an example, IBM Rational Software 
Architect and Spark System Enterprise Architect do not 
implement QVT. Other tools partially support QVT, 
for instance Together allows defining and modifying 
transformations model-to-model (M2M) and model-
to-text (M2T) that are QVT-Operational compliant. 
Medini QVT partially implements QVT (Medini, 
2012). It is integrated with Eclipse and allows the 
execution of transformations expressed in the QVT-
Relation language (CASE MDA, 2012).

The MMT (Model-to-Model Transformation) 
Eclipse project is a subproject of the top-level Eclipse 
Modeling Project that provides a framework for model-
to-model transformation languages. Transformations 
are executed by transformation engines that are plugged 
into the Eclipse Modeling infrastructure. The main 
transformation engines developed in the scope of that 
project are ATL and QVT (ATL, 2012). ATL is a 
model transformation language and toolkit developed 
by ATLAS INRIA & LINA research group.



 

 

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-modernization-and-the-state-of-the-art-

and-challenges/112432

Related Content

Measuring Text Readability Using Reading Level
James C. Brewer (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 1499-

1507).

www.irma-international.org/chapter/measuring-text-readability-using-reading-level/183864

Security of Cloud Computing
Manel Medhioub, Manel Abdelkaderand Mohamed Hamdi (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 1493-1501).

www.irma-international.org/chapter/security-of-cloud-computing/112551

A Multimodal Sentiment Analysis Method Integrating Multi-Layer Attention Interaction and Multi-

Feature Enhancement
Shengfeng Xieand Jingwei Li (2024). International Journal of Information Technologies and Systems

Approach (pp. 1-20).

www.irma-international.org/article/a-multimodal-sentiment-analysis-method-integrating-multi-layer-attention-interaction-

and-multi-feature-enhancement/335940

A Systematic Review on Author Identification Methods
Sunil Digamberrao Kaleand Rajesh Shardanand Prasad (2017). International Journal of Rough Sets and

Data Analysis (pp. 81-91).

www.irma-international.org/article/a-systematic-review-on-author-identification-methods/178164

An Adaptive Curvelet Based Semi-Fragile Watermarking Scheme for Effective and Intelligent

Tampering Classification and Recovery of Digital Images
K R. Chetanand S Nirmala (2018). International Journal of Rough Sets and Data Analysis (pp. 69-94).

www.irma-international.org/article/an-adaptive-curvelet-based-semi-fragile-watermarking-scheme-for-effective-and-

intelligent-tampering-classification-and-recovery-of-digital-images/197381

http://www.igi-global.com/chapter/software-modernization-and-the-state-of-the-art-and-challenges/112432
http://www.igi-global.com/chapter/software-modernization-and-the-state-of-the-art-and-challenges/112432
http://www.irma-international.org/chapter/measuring-text-readability-using-reading-level/183864
http://www.irma-international.org/chapter/security-of-cloud-computing/112551
http://www.irma-international.org/article/a-multimodal-sentiment-analysis-method-integrating-multi-layer-attention-interaction-and-multi-feature-enhancement/335940
http://www.irma-international.org/article/a-multimodal-sentiment-analysis-method-integrating-multi-layer-attention-interaction-and-multi-feature-enhancement/335940
http://www.irma-international.org/article/a-systematic-review-on-author-identification-methods/178164
http://www.irma-international.org/article/an-adaptive-curvelet-based-semi-fragile-watermarking-scheme-for-effective-and-intelligent-tampering-classification-and-recovery-of-digital-images/197381
http://www.irma-international.org/article/an-adaptive-curvelet-based-semi-fragile-watermarking-scheme-for-effective-and-intelligent-tampering-classification-and-recovery-of-digital-images/197381

