
Category: Systems and Software Engineering

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

7310

Scrum Software Development Methodology

INTRODUCTION

An important decision in developing software is what 
methodology to use. Scrum, a very popular technique, 
is an agile software development methodology that 
started the early 1990s (Schwaber, Business Object 
Design Implementation Workshop, 1995). Agile 
and scrum methodologies are growing popular with 
software developers because they are seeking ways 
to reduce cost and delivery times, while maintaining 
software quality and improving customer satisfaction.

The methods used in scrum were developed to 
solve problems that existed with other development 
methodologies, which were seen as slower and in-
flexible. A particular emphasis was given to meeting 
user goals and allowing users to change their minds 
during the development process. By using an approach 
to software development that creates several small, 
operational deliverables and allowing requirements 
more flexibility, scrum promises lower software de-
velopment costs and shorter development times. With 
scrum methodologies, flexibility towards changes in 
user requirements purports to deliver products that 
achieve high user satisfaction. Scrum is designed to 
accommodate environments where requirements are 
unstable and ill defined.

BACKGROUND

In the history of software development, programmers 
have pursued approaches to development that improve 
quality, shorten time to market and reduce cost. Major 
methodologies in software development include water-
fall, iterative design and agile development.

The earliest computer programs followed no 
methodology, resulting in ‘spaghetti code’ and un-
maintainable systems. As development projects became 
larger and more complex, the waterfall methodology 
was introduced (Royce, 1970) to manage large-scale 

software development projects. Waterfall methodology 
has an approach to developing software that consists of 
several stages: requirements, design, implementation, 
test and maintenance. The process is known for being 
very rigid and not accommodating to changes that may 
evolve, or be requested during the project. This devel-
opment process has many variations but is commonly 
known as the software development life cycle (SDLC). 
Requirements are developed and agreed upon at the 
beginning of the life cycle and at the end of develop-
ment, teams test to see if they met the requirements. The 
requirements document represents a contract between 
the developer and client on what specifically will be 
delivered. When a change in the software is needed, a 
requirements change is made, triggering many more 
changes in code, test and documentation. Controlling 
the changes and adequately testing the entire system, 
helps to maintain quality as the software changes. The 
inflexibility with the waterfall methodology made the 
importance of correctly defining the requirements clear. 
It was much more expensive to fix a requirement or 
add a feature to a large scale program at the end of 
the life cycle.

Large software projects developed a reputation of 
poor user satisfaction, late delivery and cost overruns 
(Yourdon, 2003). The 1995 Chaos Report from the 
Standish Group reported that approximately 31% of 
software projects end in failure, and 50% of the proj-
ects that succeeded were 189% over their original cost 
estimates (The Standish Group, 1995). People began 
to look at alternative development methods to improve 
on cost, schedule and satisfaction.

Barry Boehm proposed a more iterative develop-
ment methodology known as the spiral development 
process (Boehm, 1986). Phases of the spiral method 
are: determine objectives, risk mitigation, develop-
ment and test, and planning. The spiral method breaks 
development down into several iterations, where is-
sues of planning and risk are continually addressed. 
The Spiral method allows for requirements changes 

Ruth Guthrie
California Polytechnic State University, Pomona, USA

DOI: 10.4018/978-1-4666-5888-2.ch719



Scrum Software Development MethodologyCategory: Systems and Software Engineering

 S

7311

to occur more frequently, resulting in lower cost and 
higher user satisfaction. One disadvantage of the spiral 
methodology was that is complex and difficult for 
people to understand.

Agile methodologies arose from iterative strategies, 
like spiral development, in the early 2000s. The focus of 
agile methods is to allow for more fluid, rapid require-
ments changes, continuous user involvement and the use 
of smaller, self-organizing teams to develop software.

Seeing older methodologies as too rigid, a group 
of software developers met in Snowbird, Utah, in 2001 
to develop concepts for agile development methods 
(The Agile Manifesto, 2013). They formed the Agile 
Alliance and defined their goals in what is known as 
the Agile Manifesto.

In the manifesto (Figure 1), developers focus on 
meeting user needs through collaboration and change 
are evident. Their belief was, if a change is needed, it 
should be made in the interest of developing the best 
possible product. The focus is on making software work 
well over following a restrictive contract or adhering 
to a massive design document.

Among different agile techniques are Agile Uni-
fied Process (AUP), Extreme Programming (XP) and 
Scrum. Scrum’s name is derived from a Harvard Busi-
ness Review article (Takeuchi & Nonaka, 1986) that 
looked at the success of teams. Takeuchi compared 
the outstanding manufacturing teams to a scrum in the 
sport of rugby. Ken Schwaber adapted the ideas from 
Takeuchi’s article to software development (Schwaber 
& Gladwell, SCRUM Development Process, 1996). 
Scrum is the most popular of the agile techniques and is 

rapidly growing. Of agile methods practiced in industry, 
32% of them use scrum (Forrester Research, 2009).

Advocates of scrum development claim that it 
delivers:

•	 Lower overall cost
•	 Shorter time to market
•	 Adaptability to user changes
•	 Higher quality, operational products
•	 High user satisfaction

Scrum methodology has a specific set of roles, 
techniques and tools that help teams accurately cost 
and manage their software development projects.

SCRUM METHODOLOGY

Overview of the Scrum Process

Scrum projects are typified by small development 
teams working on incremental functional deliveries. 
Each functional delivery is a working software product, 
with the highest priority functionality developed first. 
After each delivery, the user gives feedback to the de-
velopment team. The team modifies the requirements 
and continues another iteration, until the software is 
complete.

Schwaber and Gladwell (1996) defined three 
phases of scrum:

Figure 1. Agile Manifesto (http://www.agilealliance.org)



 

 

7 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/scrum-software-development-

methodology/112428

Related Content

Digital Textbook
Elena Railean (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2268-2277).

www.irma-international.org/chapter/digital-textbook/112639

Meta-Context Ontology for Self-Adaptive Mobile Web Service Discovery in Smart Systems
Salisu Garba, Radziah Mohamadand Nor Azizah Saadon (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-26).

www.irma-international.org/article/meta-context-ontology-for-self-adaptive-mobile-web-service-discovery-in-smart-

systems/307024

Exemplary Works on Information Systems Research
Michael E. Whitmanand Amy B. Woszczynski (2004). The Handbook of Information Systems Research (pp.

1-14).

www.irma-international.org/chapter/exemplary-works-information-systems-research/30339

Fog Caching and a Trace-Based Analysis of its Offload Effect
Marat Zhanikeev (2017). International Journal of Information Technologies and Systems Approach (pp. 50-

68).

www.irma-international.org/article/fog-caching-and-a-trace-based-analysis-of-its-offload-effect/178223

EDRC: An Early Data Lending-Based Real-Time Commit Protocol
Sarvesh Pandeyand Udai Shanker (2021). Encyclopedia of Information Science and Technology, Fifth

Edition (pp. 800-814).

www.irma-international.org/chapter/edrc/260230

http://www.igi-global.com/chapter/scrum-software-development-methodology/112428
http://www.igi-global.com/chapter/scrum-software-development-methodology/112428
http://www.irma-international.org/chapter/digital-textbook/112639
http://www.irma-international.org/article/meta-context-ontology-for-self-adaptive-mobile-web-service-discovery-in-smart-systems/307024
http://www.irma-international.org/article/meta-context-ontology-for-self-adaptive-mobile-web-service-discovery-in-smart-systems/307024
http://www.irma-international.org/chapter/exemplary-works-information-systems-research/30339
http://www.irma-international.org/article/fog-caching-and-a-trace-based-analysis-of-its-offload-effect/178223
http://www.irma-international.org/chapter/edrc/260230

