
Category: Systems and Software Engineering

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

7106

Enhancing Formal Methods with 
Feature Models in MDD

INTRODUCTION

As formal methods offer a wide spectrum of possible 
paths towards designing high-quality software, they 
are receiving increasing attention in the academia 
and the industry, especially where safety or secu-
rity is important (Streitferdt; Riebisch & Philippow, 
2003). By using formal methods early in the software 
development process, ambiguities, incompleteness, 
inconsistencies, errors, or misunderstandings can be 
detected, avoiding their discovery during costly testing 
and debugging phases.

A well-known formal method is the RAISE Method 
(George, Haxthausen, Hughes, Milne, Prehn, & Peder-
sen, 1995), which has been used on real developments 
(Dang Van, George, Janowski, & Moore, 2002). This 
method includes a large number of techniques and 
strategies for doing formal development and proofs, 
as well as a formal specification language, the RAISE 
Specification Language (RSL) (George, Haff, Have-
lund, Haxthausen, Milne, Nielsen, Prehn, & Wagner, 
1992), and a set of tools to help writing, checking, 
printing, storing, transforming, and reasoning about 
specifications (George, 2001). However, formal speci-
fications are unfamiliar to stakeholders, whose active 
participation is crucial in the first stages of software 
development process to understand and communicate 
the problem. This also holds in Domain Analysis (DA) 
(Kang, Kim, Lee, & Kim, 1998), because its first stage 
is to capture the knowledge of a particular domain, mak-

ing necessary to have a model that is comprehensible 
by software engineers and domain experts.

A way to contribute to bridge this gap is to work in 
the integration of a DA phase into the RAISE Method, 
in order to specify a family of systems to produce quali-
tative and reliable applications in a domain, promoting 
early reuse and reducing development costs.

The use of Feature Models (FM) (Eisenecker & 
Czarnecki, 2000) to represent the DA facilitates the 
customization of software requirements. In DA, features 
and relationships between features (called Domain 
Feature Model) are used to organize the requirements 
of a set of similar applications in a software domain.

In this article, an informal strategy which starts 
by defining this feature model following one of the 
several proposals that facilitate the construction of FM: 
Feature-Oriented Reuse Method (FORM) (Kang, Kim, 
Lee, & Kim, 1998), is presented. Then, this model is 
transformed, by means of a set of manual heuristics, into 
a RSL specification that can be later developed into a 
more concrete one to automatically obtain a prototype 
to validate the specification by using the RAISE Tools. 
The use of FM is motivated by the fact that stakehold-
ers often speak about product characteristics in terms 
of “features the product has and/or delivers,” using 
them to communicate their ideas, needs, and problems.

In order to fit the main proposal of enhancement 
of formal developments with the RAISE Method 
into Model Driven Development (MDD) paradigm 
(Mellor, Clark, & Futagami, 2003), an ATL (Atlas 
Transformation Language) (ATL, 2012) transforma-

Felice Laura
Universidad Nacional del Centro de la Provinicia de Buenos Aires, Argentina

Ridao Marcela
Universidad Nacional del Centro de la Provinicia de Buenos Aires, Argentina

Mauco María Virginia
Universidad Nacional del Centro de la Provinicia de Buenos Aires, Argentina

Leonardi María Carmen
Universidad Nacional del Centro de la Provinicia de Buenos Aires, Argentina

DOI: 10.4018/978-1-4666-5888-2.ch700



Enhancing Formal Methods with Feature Models in MDD

 S

Category: Systems and Software Engineering

7107

tion which allows the automatic derivation of a first 
abstract RSL specification of a domain starting from 
a Feature Model has been developed. The ATL rules 
define how features and relationships between them 
(the source model) are matched and navigated to pro-
duce the RSL specification (the target model) (Felice, 
Ridao, Mauco, & Leonardi, 2011). The rules follow 
closely the principles proposed in the RAISE Method, 
so this first and still incomplete specification may be 
later developed into a more concrete one following the 
RAISE Method steps. With a concrete specification, 
the RAISE tools can be used to automatically obtain 
a quick prototype and get a feeling of what the speci-
fication really does.

An improved version of the ATL transformation 
is presented in this article. With this transformation, 
a MDD software development process which obtains 
an initial RSL specification that will be the basis for 
a PIM (Platform Independent Model) is enhanced.

BACKGROUND

The Feature Model

Domain modeling is the result of the analysis of com-
monalities and variabilities of systems within a domain. 
It is a high level description of the application family, 
providing a framework for describing the essential 
characteristics. Examples of more relevant methods 
include Feature-Oriented Domain Analysis (FODA) 
(Kang, Cohen, Hess, Novak, & Peterson, 1990), Orga-
nization Domain Modeling (ODM) (Simos, 1995), and 
FORM. They support the notion of feature-oriented. 
This is a concept based on the emphasis this method 
places on finding the features or functionalities usually 
expected in applications for a given domain. FM is a 
modeling notation used to represent the variability in 
a system family and describes all valid configurations.

The model captures commonality as an AND/OR 
graph. Then, this model is used to define parameter-
ized reference architectures and appropriate reusable 
components which are instantiated during actual ap-
plication development. FM are able to describe the 
aspects, commonalities or characteristics of a system 
and include variability modeling for system families. 
Commonalities can be modeled by common features 

(mandatory features whose ancestors are also man-
datory), and variabilities can be modeled by variant 
features, such as optional, alternative, and or-features.

A feature is a prominent or distinctive user-visible 
aspect, quality, or characteristic of a software system or 
systems (Eisenecker & Czarnecki, 2000). A feature is 
detailed in any number of other features (subfeatures). 
Mandatory features describe detailed aspects that the 
parent feature must support, while optional features 
may be selected when creating a concrete system from 
a feature model. Alternative features have a multiplicity 
similar to the UML multiplicity, defining how many of 
the features must or may be selected. In addition to the 
hierarchical relationship, a constraint relation defines if 
a feature requires or excludes with any other features. 
Figure 1 summarizes the notation used in (Montero, 
Pena, & Ruiz-Cortes, 2008) for Feature Diagram (FD).

The feature requested by a stakeholder is called a 
concept feature, it is the root node of the FD and all 
features are represented as child nodes. The hierarchical 
relationships mandatory, optional, and alternative are 
represented by different edges between the nodes. A 
simple line with a filled circle represents a mandatory 
relationship, while the optional is represented with a 
line ending with an empty circle. Arcs spanning two or 
more edges of the feature nodes depict a set of alterna-
tive features. The arc is annotated with the multiplicity 

Figure 1. FD notation



 

 

14 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/enhancing-formal-methods-with-feature-models-

in-mdd/112409

Related Content

Virtualization as the Catalyst for Cloud Computing
Natarajan Meghanathan (2015). Encyclopedia of Information Science and Technology, Third Edition (pp.

1096-1110).

www.irma-international.org/chapter/virtualization-as-the-catalyst-for-cloud-computing/112505

Food Security Policy Analysis Using System Dynamics: The Case of Uganda
Isdore Paterson Guma, Agnes Semwanga Rwashanaand Benedict Oyo (2018). International Journal of

Information Technologies and Systems Approach (pp. 72-90).

www.irma-international.org/article/food-security-policy-analysis-using-system-dynamics/193593

Comprehensible Explanation of Predictive Models
Marko Robnik-Šikonja (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

2085-2094).

www.irma-international.org/chapter/comprehensible-explanation-of-predictive-models/183922

Measuring the Effectiveness of Designing End-User Interfaces Using Design Theories
Juan Manuel Gómez Reynosoand Lizeth Itziguery Solano Romo (2020). International Journal of

Information Technologies and Systems Approach (pp. 54-72).

www.irma-international.org/article/measuring-the-effectiveness-of-designing-end-user-interfaces-using-design-

theories/252828

Image Segmentation Methods
Manassés Ribeiroand Heitor Silvério Lopes (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 5947-5956).

www.irma-international.org/chapter/image-segmentation-methods/113052

http://www.igi-global.com/chapter/enhancing-formal-methods-with-feature-models-in-mdd/112409
http://www.igi-global.com/chapter/enhancing-formal-methods-with-feature-models-in-mdd/112409
http://www.irma-international.org/chapter/virtualization-as-the-catalyst-for-cloud-computing/112505
http://www.irma-international.org/article/food-security-policy-analysis-using-system-dynamics/193593
http://www.irma-international.org/chapter/comprehensible-explanation-of-predictive-models/183922
http://www.irma-international.org/article/measuring-the-effectiveness-of-designing-end-user-interfaces-using-design-theories/252828
http://www.irma-international.org/article/measuring-the-effectiveness-of-designing-end-user-interfaces-using-design-theories/252828
http://www.irma-international.org/chapter/image-segmentation-methods/113052

