
 S

7073

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Systems and Software Engineering

DOI: 10.4018/978-1-4666-5888-2.ch697

Detecting Inconsistency in the 
Domain-Engineering

INTRODUCTION

Recently, Software Product Line (SPL) is a major tech-
nical paradigm to develop software products that has 
been used by big companies. There are two main phases 
in SPL: the domain-engineering phase and the applica-
tion-engineering phase. In Domain-engineering Phase, 
software assets are collected and organized in suitable 
model for configuration. Domain-engineering Phase is 
a continuous process. When there are new assets, they 
are added to the existing assets. Cumulative aggregation 
(for the software assets) may produce some errors. The 
grouping of assets may be made at different times and 
by different groups of people. In some cases, there is a 
parallel development process, i.e., several people add 
assets (to develop domain-engineering) at the same 
time. Moreover, Ajila and Kaba (2008) have proved 
that the domain-engineering process is a dynamic for 
some of reasons, such as changes in: technology, user 
requirements, or business rules. Another reason why 
domain-engineering is complicated is that the nature 
of a feature, i.e. software asset, (whether optional or 
mandatory) can differ from product to product (Buhne 
et al., 2004). As a fact, a successful software product 
which is generated from domain-engineering is highly 
dependent on the validity of it. Hence, validation is a 
significant process within the domain-engineering.

Recently, validation of SPL has been discussed as 
an important issue (Benavides et al., 2010; Heymans 
et al., 2011; Eisenecker et al., 2012). Mannion (2002) 
defines validation in SPL as a mechanism that is used 
to ensure that a SPL can produce at least one prod-
uct that can satisfy the constraint dependency rules. 
Lan et al. (2006) define validation in variability as a 
mechanism to check if the configuration output satis-
fies corresponding variability constraints (in a specific 

domain) or not. In this article, we define validation in 
domain-engineering as a method used to ensure the 
detection of inconsistency in the domain-engineering’s 
and provide explanations to the modeler so that incon-
sistency can be detected and eliminated.

Formalization and reasoning represent the lifecycle 
steps for the automated validation of SPL. Formaliza-
tion means modeling SPL using the standard method, 
which allows some standard tools to reason the model. 
In this work, we have used First Order Logic (FOL) to 
formalize SPL and used Prolog (Wielemaker, 2007) 
as a reasoning tool.

In this article, inconsistency detection in domain 
engineering has been discussed. The initial versions of 
this work are published in Elfaki etl (2008) and Elfaki 
et al. (2009) where the formalization of our approach, 
i.e., our notations has been described in details.

In this article, we analyse the inconsistency problem 
and define three types of inconsistency. First Order 
Logic rules are developed in order to detect inconsis-
tency in the domain-engineering process. The definition 
of the three types of inconsistency and the detection 
of inconsistency in the domain-engineering process 
are our contributions to the literature in respect of this 
operation. In the literature, only direct inconsistency 
is detected at the configuration stage (Hemakumar, 
2008; White et al., 2009)

This article is organized as follow: Background is 
states in section 2. The inconsistency detection opera-
tion are described and discussed in section 3. Future 
directions are presented in section 4. Conclusion is 
discussed in section 5.

Software Product Lines: the SPL is defined as a 
software engineering methodology for creating a collec-
tion of software products from a repository of software 
assets. Meyer and Lopez (1995) define the SPL as a 

Abdelrahman Osman Elfaki
University of Tabuk, Saudi Arabia

Yucong Duan
Hainan University, China



 S

Category: Systems and Software EngineeringDetecting Inconsistency in the Domain-Engineering

7074

set of products that share a common core technology 
and address a related set of market applications. In an 
SPL, all software assets are collected in one place, i.e., 
in a software assets repository. The specific software 
product is created from this repository using specific 
techniques. In an SPL, there are two main processes; 
domain engineering and application engineering. On 
the other hand, domain engineering is defined as the 
first process in an SPL is domain engineering, which 
represents the domain repository and is responsible for 
preparing domain assets using the variability model. 
Generally, the domain-engineering process replaces the 
traditional Software Development Life Cycle (SDLC) 
by focusing on the production of a family of software 
products that share common assets.

The main objectives of domain engineering are to 
(Pohl et al., 2005): provide definition for the variability 
and commonality in SPL, define the set of software 
products that can be generated from SPL, and provide 
reusable software assets.

Detecting Inconsistency in 
the Domain Engineering

In a SPL, domain engineering contains software assets. 
In our proposed approach, a software asset has only 
two possibilities: variation point or variant.

Definition: Let fi denotes a feature, VPi denotes a 
variation point, and Vi denotes a variant, where i ∈ I+. 

Inconsistency is a critical error; it can prevent 
the production of any software product that has an 
inconsistency relation between its features. Incon-
sistency is also known as a conditional dead feature 
(Hemakumar, 2008). Inconsistency is identified by 
(Batory et al., 2006) as a particular research challenge. 
Inconsistency occurs as a result of contradictions in 
constraint dependency rules. This type of error is very 
complicated because it can take different forms and can 
occur between groups of features or between individual 
features. Inconsistency in a FM describes relations 
between features that cannot be true at the same time, 
e.g. (f1 requires f2) and (f2 excludes f1), which means 
selection of f1 must be followed by selection of f2, but 
selection of f2 prevents selection of f1. Therefore, these 
relations cannot be true at the same time. A SPL can 
contain some other complicated forms of inconsistency. 

For instance, ((f1 and f2 and f3) requires (f4 and f5)) and 
(f1 excludes f5). This example describes the existence 
of features f1, f2, and f3 together which requires the 
existence of features f4 and f5. At the same time, feature 
f1 excludes feature f5. Thus, these relations could not 
be implemented at the same time.

Moreover, a SPL can contain complicated forms 
of inconsistency such as VP1 excludes VP2 and VP1 
require V2, where VP1, VP2 are variation points and 
V2 is a variant belongs to VP2. Inconsistency is very 
complicated because it takes different forms. Inconsis-
tency can occur between groups of features, individual 
features, or between a group features and an individual 
feature. In the following, we define three types of 
inconsistency and we develop logic rules (based on 
FOL) to detect all the defined types of inconsistency.

Forms of Inconsistency

We categorize inconsistency into three forms: direct 
inconsistency, indirect inconsistency and inconsistency 
related to a common feature. In the following, these 
forms of inconsistency are discussed and the rules that 
detect each form are illustrated.

Direct Inconsistency

In direct inconsistency, all features are of the same 
type: variation point or variant. The relation (f1, f2) 
requires (f3, f4, f5) means the existence of both f1 and 
f2 requires the existence of f3, f4 and f5 together. Direct 
inconsistency can be divided in four groups:

•	 Many-to-Many Inconsistency: Here, a set 
requires another set while the required set ex-
cludes the first one, e.g., ((f1, f2, f3) requires (f4, 
f5, f6) and ((f4, f5, f6) excludes (f1, f2, f3));

•	 Many-to-One Inconsistency: A set of features 
has a constraint dependency relation (require/
exclude) with one feature while this feature has 
a contradictory relation to that set, e.g., ((f1, f2, 
f3) requires f4) and (f4 excludes (f1, f2, f3));

•	 One-to-Many Inconsistency: One feature has 
a constraint dependency relation (require/ex-
clude) with a set of features while this set has 
a contradictory relation to that feature, e.g., (f4 



 

 

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/detecting-inconsistency-in-the-domain-

engineering/112406

Related Content

Detection of Automobile Insurance Fraud Using Feature Selection and Data Mining Techniques
Sharmila Subudhiand Suvasini Panigrahi (2018). International Journal of Rough Sets and Data Analysis

(pp. 1-20).

www.irma-international.org/article/detection-of-automobile-insurance-fraud-using-feature-selection-and-data-mining-

techniques/206874

The Web Ontology Language (OWL) and Its Applications
Jorge Cardosoand Alexandre Miguel Pinto (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 7662-7673).

www.irma-international.org/chapter/the-web-ontology-language-owl-and-its-applications/112469

Biometric Template Security and Biometric Encryption Using Fuzzy Frameworks
Debanjan Sadhyaand Sanjay Kumar Singh (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 512-524).

www.irma-international.org/chapter/biometric-template-security-and-biometric-encryption-using-fuzzy-

frameworks/112364

Indexing and Compressing Text
Ioannis Kouris, Christos Makris, Evangelos Theodoridisand Athanasios Tsakalidis (2015). Encyclopedia of

Information Science and Technology, Third Edition (pp. 1800-1808).

www.irma-international.org/chapter/indexing-and-compressing-text/112585

Improving Health Care Management Through the Use of Dynamic Simulation Modeling and

Health Information Systems
Daniel Goldsmithand Michael Siegel (2012). International Journal of Information Technologies and Systems

Approach (pp. 19-36).

www.irma-international.org/article/improving-health-care-management-through/62026

http://www.igi-global.com/chapter/detecting-inconsistency-in-the-domain-engineering/112406
http://www.igi-global.com/chapter/detecting-inconsistency-in-the-domain-engineering/112406
http://www.irma-international.org/article/detection-of-automobile-insurance-fraud-using-feature-selection-and-data-mining-techniques/206874
http://www.irma-international.org/article/detection-of-automobile-insurance-fraud-using-feature-selection-and-data-mining-techniques/206874
http://www.irma-international.org/chapter/the-web-ontology-language-owl-and-its-applications/112469
http://www.irma-international.org/chapter/biometric-template-security-and-biometric-encryption-using-fuzzy-frameworks/112364
http://www.irma-international.org/chapter/biometric-template-security-and-biometric-encryption-using-fuzzy-frameworks/112364
http://www.irma-international.org/chapter/indexing-and-compressing-text/112585
http://www.irma-international.org/article/improving-health-care-management-through/62026

