
2036 Section: Large Datasets

Vertical Data Mining on Very Large Data Sets
William Perrizo
North Dakota State University, USA

Qiang Ding
Chinatelecom Americas, USA

Qin Ding
East Carolina University, USA

Taufik Abidin
North Dakota State University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Due to the rapid growth of the volume of data that are
available, it is of importance and challenge to develop
scalable methodologies and frameworks that can be
used to perform efficient and effective data mining on
large data sets. Vertical data mining strategy aims at
addressing the scalability issues by organizing data in
vertical layouts and conducting logical operations on
vertical partitioned data instead of scanning the entire
database horizontally in order to perform various data
mining tasks.

BACKGROUND

The traditional horizontal database structure (files of
horizontally structured records) and traditional scan-
based data processing approaches (scanning files of
horizontal records) are known to be inadequate for
knowledge discovery in very large data repositories
due to the problem of scalability. For this reason much
effort has been put on sub-sampling and indexing as
ways to address and solve the problem of scalability.
However, sub-sampling requires that the sub-sampler
know enough about the large dataset in the first place
in order to sub-sample “representatively”. That is, sub-
sampling requires considerable knowledge about the
data, which, for many large datasets, may be inadequate
or non-existent. Index files are vertical structures. That
is, they are vertical access paths to sets of horizontal
records. Indexing files of horizontal data records does
address the scalability problem in many cases, but it
does so at the cost of creating and maintaining the index
files separate from the data files themselves.

A new way to organize data is to organize them
vertically, instead of horizontally. Data miners are
typically interested in collective properties or predic-
tions that can be expressed very briefly (e.g., a yes/no
answer). Therefore, the result of a data mining query
can be represented by a bitmap vector. This important
property makes it possible to perform data mining
directly on vertical data structures.

MAIN FOCUS

Vertical data structures, vertical mining approaches
and multi-relational vertical mining will be explored
in detail to show how vertical data mining works.

Vertical Data Structures

The concept of vertical partitioning has been studied
within the context of both centralized and distributed
database systems for a long time, yet much remains to be
done (Winslett, 2002). There are great advantages of us-
ing vertical partitioning, for example, it makes hardware
caching work really well; it makes compression easy
to do; it may greatly increase the effectiveness of the
I/O device since only participating fields are retrieved
each time. The vertical decomposition of a relation
also permits a number of transactions to be executed
concurrently. Copeland & Khoshafian (1985) presented
an attribute-level Decomposition Storage Model called
DSM, similar to the Attribute Transposed File model
(ATF) (Batory, 1979), that stores each column of a
relational table into a separate table. DSM was shown
to perform well. It utilizes surrogate keys to map indi-
vidual attributes together, hence requiring a surrogate

 2037

Vertical Data Mining on Very Large Data Sets

V
key to be associated with each attribute of each record
in the database. Attribute-level vertical decomposi-
tion is also used in Remotely Sensed Imagery (e.g.,
Landsat Thematic Mapper Imagery), where it is called
Band Sequential (BSQ) format. Beyond attribute-level
decomposition, Wong et al. (1985) presented the Bit
Transposed File model (BTF), which took advantage
of encoded attribute values using a small number of
bits to reduce the storage space.

In addition to ATF, BTF, and DSM models, there
has been other work on vertical data structuring, such
as Bit-Sliced Indexes (BSI) (Chan & Ioannidis, 1998,
O’Neil & Quass, 1997, Rinfret et al., 2001), Encoded
Bitmap Indexes (EBI) (Wu & Buchmann, 1998; Wu,
1998), and Domain Vector Accelerator (DVA) (Perrizo
et al., 1991).

A Bit-Sliced Index (BSI) is an ordered list of bitmaps
used to represent values of a column or attribute. These
bitmaps are called bit-slices, which provide binary
representations of attribute’s values for all the rows.

In the EBI approach, an encoding function on the
attribute domain is applied and a binary-based bit-sliced
index on the encoded domain is built. EBIs minimize
the space requirement and show more potential opti-
mization than binary bit-slices.

Both BSIs and EBIs are auxiliary index structures
that need to be stored twice for particular data columns.
As we know, even the simplest index structure used
today incurs substantial increase in total storage require-
ments. The increased database size, in turn, translates
into higher media and maintenance costs, and results
in lower performance.

Domain Vector Accelerator (DVA) is a method to
perform relational operations based on vertical bit-vec-
tors. The DVA method performs particularly well for
joins involving a primary key attribute and an associ-
ated foreign key attribute.

Vertical mining requires data to be organized verti-
cally and be processed horizontally through fast, multi-
operand logical operations, such as AND, OR, XOR, and
complement. Predicate tree (P-tree1) (Ding et al., 2002)
is one form of lossless vertical structure that meets this
requirement. P-tree is suitable to represent numerical
and categorical data and has been successfully used in
various data mining applications, including classifica-
tion (Khan et al., 2002; Ding et al., 2002; Perrizo et
al., 2007), clustering (Denton et al., 2002), association
rule mining (Ding et al., 2002; Imad et al., 2004), and
outlier detection (Ren et al., 2004).

To convert a relational table of horizontal records to
a set of vertical P-trees, the table has to be projected into
columns, one for each attribute, retaining the original
record order in each. Then each attribute column is
further decomposed into separate bit vectors (called
bit Sequential format, or bSQ format), one for each bit
position of the values in that attribute. Each bit vector,
i.e., bSQ file, is then compressed into a tree structure
by recording the truth of the predicate “purely 1-bits”
recursively on halves until purity is reached.

Figure 1 is an example of an 8×8 bSQ file and its
corresponding P-tree (Ding et al., 2002). In this example,
36 is the number of 1’s in the entire image, called root
count. This root level is labeled level 0. The numbers
16, 7, 13, and 0 at the next level (level 1) are the 1-bit
counts for the four major quadrants in raster order.
Since the first and last level-1 quadrants are composed
entirely of 1-bits (called pure-1 quadrants) and 0-bits
(called pure-0 quadrants) respectively, sub-trees are not
needed and these branches terminate. This pattern is
continued recursively using the Peano or Z-ordering of
the four sub-quadrants at each new level. Eventually,
every branch terminates.

A variation of the P-tree data structure, the PM-tree,
is a similar structure in which masks rather than counts

1 1 1 1 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0

P-tree 36
 __________/ / \ __________
 / ___ / ___ \
 / / \ \
 16 ____7__ _13__ 0
 / / | \ / | \ \
 2 0 4 1 4 4 1 4
 //|\ //|\ //|\
 1100 0010 0001

Figure 1. P-tree for a 8×8 bSQ file

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/vertical-data-mining-very-large/11099

Related Content

Association Rule Mining
Yew-Kwong Woon (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 76-82).

www.irma-international.org/chapter/association-rule-mining/10801

Proximity-Graph-Based Tools for DNA Clustering
Imad Khoury, Godfried Toussaint, Antonio Ciampiand Isadora Antoniano (2009). Encyclopedia of Data

Warehousing and Mining, Second Edition (pp. 1623-1631).

www.irma-international.org/chapter/proximity-graph-based-tools-dna/11036

Scalable Non-Parametric Methods for Large Data Sets
V. Suresh Babu, P. Viswanathand Narasimha M. Murty (2009). Encyclopedia of Data Warehousing and Mining,

Second Edition (pp. 1708-1713).

www.irma-international.org/chapter/scalable-non-parametric-methods-large/11048

Path Mining and Process Mining for Workflow Management Systems
Jorge Cardosoand W.M.P. van der Aalst (2009). Encyclopedia of Data Warehousing and Mining, Second

Edition (pp. 1489-1496).

www.irma-international.org/chapter/path-mining-process-mining-workflow/11017

Using Dempster-Shafer Theory in Data Mining
Malcolm J. Beynon (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 2011-2018).

www.irma-international.org/chapter/using-dempster-shafer-theory-data/11095

http://www.igi-global.com/chapter/vertical-data-mining-very-large/11099
http://www.igi-global.com/chapter/vertical-data-mining-very-large/11099
http://www.irma-international.org/chapter/association-rule-mining/10801
http://www.irma-international.org/chapter/proximity-graph-based-tools-dna/11036
http://www.irma-international.org/chapter/scalable-non-parametric-methods-large/11048
http://www.irma-international.org/chapter/path-mining-process-mining-workflow/11017
http://www.irma-international.org/chapter/using-dempster-shafer-theory-data/11095

