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INTRODUCTION

Due to the rapid growth of the volume of data that are 
available, it is of importance and challenge to develop 
scalable methodologies and frameworks that can be 
used to perform efficient and effective data mining on 
large data sets.  Vertical data mining strategy aims at 
addressing the scalability issues by organizing data in 
vertical layouts and conducting logical operations on 
vertical partitioned data instead of scanning the entire 
database horizontally in order to perform various data 
mining tasks.

BACKGROUND

The traditional horizontal database structure (files of 
horizontally structured records) and traditional scan-
based data processing approaches (scanning files of 
horizontal records) are known to be inadequate for 
knowledge discovery in very large data repositories 
due to the problem of scalability.  For this reason much 
effort has been put on sub-sampling and indexing as 
ways to address and solve the problem of scalability.  
However, sub-sampling requires that the sub-sampler 
know enough about the large dataset in the first place 
in order to sub-sample “representatively”.  That is, sub-
sampling requires considerable knowledge about the 
data, which, for many large datasets, may be inadequate 
or non-existent.  Index files are vertical structures. That 
is, they are vertical access paths to sets of horizontal 
records. Indexing files of horizontal data records does 
address the scalability problem in many cases, but it 
does so at the cost of creating and maintaining the index 
files separate from the data files themselves.

A new way to organize data is to organize them 
vertically, instead of horizontally. Data miners are 
typically interested in collective properties or predic-
tions that can be expressed very briefly (e.g., a yes/no 
answer).  Therefore, the result of a data mining query 
can be represented by a bitmap vector.  This important 
property makes it possible to perform data mining 
directly on vertical data structures.

MAIN FOCUS

Vertical data structures, vertical mining approaches 
and multi-relational vertical mining will be explored 
in detail to show how vertical data mining works.

Vertical Data Structures

The concept of vertical partitioning has been studied 
within the context of both centralized and distributed 
database systems for a long time, yet much remains to be 
done (Winslett, 2002). There are great advantages of us-
ing vertical partitioning, for example, it makes hardware 
caching work really well; it makes compression easy 
to do; it may greatly increase the effectiveness of the 
I/O device since only participating fields are retrieved 
each time. The vertical decomposition of a relation 
also permits a number of transactions to be executed 
concurrently. Copeland & Khoshafian (1985) presented 
an attribute-level Decomposition Storage Model called 
DSM, similar to the Attribute Transposed File model 
(ATF) (Batory, 1979), that stores each column of a 
relational table into a separate table. DSM was shown 
to perform well.  It utilizes surrogate keys to map indi-
vidual attributes together, hence requiring a surrogate 
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key to be associated with each attribute of each record 
in the database.  Attribute-level vertical decomposi-
tion is also used in Remotely Sensed Imagery (e.g., 
Landsat Thematic Mapper Imagery), where it is called 
Band Sequential (BSQ) format.  Beyond attribute-level 
decomposition, Wong et al. (1985) presented the Bit 
Transposed File model (BTF), which took advantage 
of encoded attribute values using a small number of 
bits to reduce the storage space.

In addition to ATF, BTF, and DSM models, there 
has been other work on vertical data structuring, such 
as Bit-Sliced Indexes (BSI) (Chan & Ioannidis, 1998, 
O’Neil & Quass, 1997, Rinfret et al., 2001), Encoded 
Bitmap Indexes (EBI) (Wu & Buchmann, 1998; Wu, 
1998), and Domain Vector Accelerator (DVA) (Perrizo 
et al., 1991). 

A Bit-Sliced Index (BSI) is an ordered list of bitmaps 
used to represent values of a column or attribute. These 
bitmaps are called bit-slices, which provide binary 
representations of attribute’s values for all the rows. 

In the EBI approach, an encoding function on the 
attribute domain is applied and a binary-based bit-sliced 
index on the encoded domain is built. EBIs minimize 
the space requirement and show more potential opti-
mization than binary bit-slices. 

Both BSIs and EBIs are auxiliary index structures 
that need to be stored twice for particular data columns.  
As we know, even the simplest index structure used 
today incurs substantial increase in total storage require-
ments.  The increased database size, in turn, translates 
into higher media and maintenance costs, and results 
in lower performance.  

Domain Vector Accelerator (DVA) is a method to 
perform relational operations based on vertical bit-vec-
tors. The DVA method performs particularly well for 
joins involving a primary key attribute and an associ-
ated foreign key attribute.

Vertical mining requires data to be organized verti-
cally and be processed horizontally through fast, multi-
operand logical operations, such as AND, OR, XOR, and 
complement. Predicate tree (P-tree1) (Ding et al., 2002) 
is one form of lossless vertical structure that meets this 
requirement. P-tree is suitable to represent numerical 
and categorical data and has been successfully used in 
various data mining applications, including classifica-
tion (Khan et al., 2002; Ding et al., 2002; Perrizo et 
al., 2007), clustering (Denton et al., 2002), association 
rule mining (Ding et al., 2002; Imad et al., 2004), and 
outlier detection (Ren et al., 2004).

To convert a relational table of horizontal records to 
a set of vertical P-trees, the table has to be projected into 
columns, one for each attribute, retaining the original 
record order in each.  Then each attribute column is 
further decomposed into separate bit vectors (called 
bit Sequential format, or bSQ format), one for each bit 
position of the values in that attribute.  Each bit vector, 
i.e., bSQ file, is then compressed into a tree structure 
by recording the truth of the predicate “purely 1-bits” 
recursively on halves until purity is reached. 

Figure 1 is an example of an 8×8 bSQ file and its 
corresponding P-tree (Ding et al., 2002). In this example, 
36 is the number of 1’s in the entire image, called root 
count.  This root level is labeled level 0.  The numbers 
16, 7, 13, and 0 at the next level (level 1) are the 1-bit 
counts for the four major quadrants in raster order.  
Since the first and last level-1 quadrants are composed 
entirely of 1-bits (called pure-1 quadrants) and 0-bits 
(called pure-0 quadrants) respectively, sub-trees are not 
needed and these branches terminate.  This pattern is 
continued recursively using the Peano or Z-ordering of 
the four sub-quadrants at each new level.  Eventually, 
every branch terminates.

A variation of the P-tree data structure, the PM-tree, 
is a similar structure in which masks rather than counts 

 

 

 

 

 
 
 

1 1   1 1     1 1   0 0 
1 1   1 1     0 0   0 0 
1 1   1 1     1 1   0 0 
1 1   1 1     1 1   1 0 
1 1   1 1     0 0   0 0 
1 1   1 1     0 0   0 0 
0 0   1 1     0 0   0 0 
0 1   1 1     0 0   0 0 

P-tree                        36                                   
           __________/  / \   \__________ 
        /                   ___ /     \___              \ 
       /                   /                      \             \ 
    16          ____7__                 _13__      0   
                /    /   |      \              /   |  \    \ 
             2     0   4      1           4  4   1   4              
            //|\                //|\                  //|\ 
          1100             0010              0001               

Figure 1.  P-tree for a 8×8 bSQ file
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