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INTRODUCTION

During the past decade, we have witnessed an explosive 
growth in our capabilities to both generate and collect 
data. Various data mining techniques have been pro-
posed and widely employed to discover valid, novel 
and potentially useful patterns in these data. Data 
mining involves the discovery of patterns, associa-
tions, changes, anomalies, and statistically significant 
structures and events in huge collections of data. 

One of the key success stories of data mining research 
and practice has been the development of efficient 
algorithms for discovering frequent itemsets – both se-
quential (Srikant & Agrawal, 1996) and non-sequential 
(Agrawal & Srikant, 1994). Generally speaking, these 
algorithms can extract co-occurrences of items (taking 
or not taking into account the ordering of items) in an 
efficient manner. Although the use of sets (or sequences) 
has effectively modeled many application domains, 
like market basket analysis, medical records, a lot of 
applications have emerged whose data models do not 
fit in the traditional concept of a set (or sequence), 
but require the deployment of richer abstractions, like 
graphs or trees. Such graphs or trees arise naturally in 
a number of different application domains including 
network intrusion, semantic Web, behavioral modeling, 
VLSI reverse engineering, link analysis and chemical 
compound classification.

Thus, the need to extract complex tree-like or graph-
like patterns in massive data collections, for instance, 
in bioinformatics, semistructured or Web databases, 
became a necessity. The class of exploratory mining 
tasks, which deal with discovering patterns in massive 
databases representing complex interactions among 
entities, is called Frequent Structure Mining (FSM) 
(Zaki, 2002).

In this article we will highlight some strategic 
application domains where FSM can help provide 
significant results and subsequently we will survey the 

most important algorithms that have been proposed 
for mining graph-like and tree-like substructures in 
massive data collections.

BACKGROUND

As a motivating example for graph mining consider the 
problem of mining chemical compounds to discover 
recurrent (sub) structures. We can model this scenario 
using a graph for each compound. The vertices of the 
graphs correspond to different atoms and the graph 
edges correspond to bonds among the atoms. We can 
assign a label to each vertex, which corresponds to the 
atom involved (and maybe to its charge) and a label to 
each edge, which corresponds to the type of the bond 
(and maybe to information about the 3D orientation). 
Once these graphs have been generated, recurrent 
substructures become frequently occurring subgraphs. 
These graphs can be used in various tasks, for instance, 
in classifying chemical compounds (Deshpande, Kura-
mochi, & Karypis, 2003). 

Another application domain where graph mining is 
of particular interest arises in the field of Web usage 
analysis (Nanopoulos, Katsaros, & Manolopoulos, 
2003). Although various types of usage (traversal) pat-
terns have been proposed to analyze the behavior of a 
user (Chen, Park, & Yu, 1998), they all have one very 
significant shortcoming; they are one-dimensional pat-
terns and practically ignore the link structure of the site. 
In order to perform finer usage analysis, it is possible 
to look at the entire forward accesses of a user and to 
mine frequently accessed subgraphs of that site.

Looking for examples where tree mining has been 
successfully applied, we can find a wealth of them. A 
characteristic example is XML, which has been a very 
popular means for representing and storing information 
of various kinds, because of its modeling flexibility. 
Since tree-structured XML documents are the most 
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widely occurring in real applications, one would like to 
discover the commonly occurring subtrees that appear 
in the collections. This task could benefit applications, 
like database caching (Yang, Lee, & Hsu, 2003), storage 
in relational databases (Deutsch, Fernandez, & Suciu, 
1999), building indexes and/or wrappers (Wang & Liu, 
2000) and many more.

Tree patterns arise also in bioinformatics. For 
instance, researchers have collected large amounts of 
RNA structures, which can be effectively represented 
using a computer data structure called tree. In order 
to deduce some information about a newly sequenced 
RNA, they compare it with known RNA structures, 
looking for common topological patterns, which provide 
important insights to the function of the RNA (Shapiro 
& Zhang, 1990). Another application of tree mining in 
bioinformatics is found in the context of constructing 
phylogenetic trees (Shasha, Wang, & Zhang, 2004), 
where the task of phylogeny reconstruction algorithms 
it to use biological information about a set of e.g., taxa, 
in order to reconstruct an ancestral history linking 
together all the taxa in the set.

There are two distinct formulations for the problem 
of mining frequent graph (tree) substructures and are 
referred to as the graph-transaction (tree-transaction) 
setting and the single-graph (single-tree) setting. In the 
graph-transaction setting, the input to the pattern-min-
ing algorithm is a set of relatively small graphs (called 
transactions), whereas in the single-graph setting the 
input data is a single large graph. The difference af-
fects the way the frequency of the various patterns is 
determined. For the former, the frequency of a pattern 
is determined by the number of graph transactions that 
the pattern occurs in, irrespective of how many times 
a pattern occurs in a particular transaction, whereas 
in the latter, the frequency of a pattern is based on 
the number of its occurrences (i.e., embeddings) in 
the single graph. The algorithms developed for the 
graph-transaction setting can be modified to solve the 
single-graph setting, and vice-versa.

Depending also on the application domain, the 
considered graphs (trees) can be ordered or unordered, 
directed or undirected. No matter what these charac-
teristics are, the (sub)graph mining problem can be 
defined as follows. (A similar definition can be given 
for the tree mining problem.) Given as input a database 
of graphs and a user-defined real number 0<s≤1, we 
need to find all frequent subgraphs, where the word 
“frequent” implies those subgraphs with frequency 

larger than or equal to the threshold s. (In the follow-
ing, equivalently to the term frequency, we use the 
term support.) We illustrate this problem for the case 
of graph-transaction, labeled, undirected graphs, with 
s=2/3. The input and output of such an algorithm are 
given in Figure 1.

Although the very first attempts to deal with the 
problem of discovering substructure patterns from 
massive graph or tree data are dated back to the early 
90’s (Cook & Holder, 1994), only recently the field of 
mining for graph and tree patterns has flourished. A 
wealth of algorithms has been proposed, most of which 
are based on the original level-wise Apriori algorithm 
for mining frequent itemsets (Agrawal & Srikant, 1994). 
Next, we will survey the most important of them.

ALGORITHMS FOR GRAPH MINING

The graph is one of the most fundamental construc-
tions studied in mathematics and thus, numerous 
classes of substructures are targeted by graph mining. 
These substructures include the generic subgraph, 
induced subgraph, connected subgraph, (ordered and 
unordered) tree and path (see Figure 2). We give the 
definitions of these substructures in the next paragraph 
and subsequently present the graph mining algorithms, 
able to discover all frequent substructures of any kind 
mentioned earlier.

Following mathematical terminology, a graph is 
represented as G(V, E, f), where V is a set of vertices, 
E is a set of edges connecting pairs of vertices and f is 
a function f:E→VxV. For instance, in Figure 2 we see 
that f(e1)=(v1,v2). We say that GS(Vs,Es,f) is a generic 
subgraph of G, if Vs⊂V, Es⊂E and vi,vj∈Vs for all edges 
f(ek)=(vi,vj)∈Es. An induced subgraph ISG(Vs,Es,f) 
of G has a subset of vertices of G and the same edges 
between pairs of vertices as in G, in other words, Vs⊂V, 
Es⊂E and ∀vi,vj∈Vs, ek=(vi,vj)∈Es⇔f(ek)=(vi,vj)∈E. 
We say that CSG(Vs,Es,f) is a connected subgraph of 
G, if Vs⊂V, Es⊂E and all vertices in Vs are reachable 
through some edges in Es. An acyclic subgraph of G 
is called a tree T. Finally, a tree of G which does not 
include any braches is a path P in G.

The first algorithm for mining all frequent subgraph 
patterns is AGM (Inocuchi, Washio, & Motoda, 2000, 
2003). AGM can mine various types of patterns, namely 
generic subgraphs, induced subgraphs, connected 
subgraphs, ordered and unordered trees and subpaths. 
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