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INTRODUCTION

With the rapid growth of the World Wide Web and the 
capacity of digital data storage, tremendous amount of 
data are generated daily from business and engineering 
to the Internet and science. The Internet, financial real-
time data, hyperspectral imagery, and DNA microarrays 
are just a few of the common sources that feed torrential 
streams of data into scientific and business databases 
worldwide. Compared to statistical data sets with 
small size and low dimensionality, traditional cluster-
ing techniques are challenged by such unprecedented 
high volume, high dimensionality complex data. To 
meet these challenges, many new clustering algorithms 
have been proposed in the area of data mining (Han 
& Kambr, 2001).

Spectral techniques have proven useful and effective 
in a variety of data mining and information retrieval 
applications where massive amount of real-life data is 
available (Deerwester et al., 1990; Kleinberg, 1998; 
Lawrence et al., 1999; Azar et al., 2001). In recent 
years, a class of promising and increasingly popular 
approaches — spectral methods — has been proposed 
in the context of clustering task (Shi & Malik, 2000; 
Kannan et al., 2000; Meila & Shi, 2001; Ng et al., 2001). 
Spectral methods have the following reasons to be an 
attractive approach to clustering problem:

• Spectral approaches to the clustering problem 
offer the potential for dramatic improvements 
in efficiency and accuracy relative to traditional 
iterative or greedy algorithms. They do not intrin-
sically suffer from the problem of local optima.

• Numerical methods for spectral computations are 
extremely mature and well understood, allowing 
clustering algorithms to benefit from a long his-
tory of implementation efficiencies in other fields 
(Golub & Loan, 1996).

• Components in spectral methods have the naturally 
close relationship with graphs (Chung, 1997). This 
characteristic provides an intuitive and semantic 
understanding of elements in spectral methods. It 
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is important when the data is graph-based, such as 
links of WWW, or can be converted to graphs.

 In this paper, we systematically discuss applica-
tions of spectral methods to data clustering.

BACKGROUND

To begin with the introduction of spectral methods, we 
first present the basic foundations that are necessary to 
understand spectral methods.

Mathematical Foundations

Data is typically represented as a set of vectors in a 
high-dimensional space. It is often referred as the matrix 
representation of the data. Two widely used spectral 
operations are defined on the matrix.

• EIG(A) operation: Given a real symmetric matrix 
An×n, if there is a vector x ∈ Rn ≠ 0 such that Ax=λx 
for some scalar λ, then λ is called the eigenvalue of 
A with corresponding (right) eigenvector x. EIG(A) 
is an operation to compute all eigenvalues and 
corresponding eigenvectors of A. All eigenvalues 
and eigenvectors are real, that is, guaranteed by 
Theorem of real schur decomposition (Golub & 
Loan, 1996).  

• SVD(A) operation: Given a real matrix Am×n, 
similarly, there always exists two orthogonal 
matrices U ∈ Rm×m and V ∈ Rn×n ( UTU= I and 
VTV=I ) to decompose A to the form A=USVT, 
where S = diag(s1, ..., sr) ∈ Rr×r, r=rank(A) and  
s1 ≥ s2... ≥ sr = ... = sn = 0.  Here, the si are the 
singular values of A and the first r columns of U 
and V are the left and right (respectively) singular 
vectors of A. SVD(A) is called Singular Value 
Decomposition of A (Golub & Loan, 1996).

Typically, the set of eigenvalues (or singular values) 
is called the spectrum of A. Besides, eigenvectors (or 
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singular vectors) are the other important components of 
spectral methods. These two spectral components have 
been widely used in various disciplines and adopted 
to analyze the key encoding information of a complex 
system. Therefore, they are also the principle objects 
in spectral methods for data clustering.

Transformations

As observed by researchers, two key components of 
spectral methods — eigenvalues and eigenvectors 
— scale with different matrices. Therefore, before the 
analysis and application of them, some transforma-
tions, or more exactly, normalizations of two spectral 
components are needed. Although this might look 
a little complicated at first, this way to use them is 
more consistent with spectral geometry and stochastic 
processes. Moreover, another advantage of normalized 
components is due to its better relationship with graph 
invariants while the raw components may fail to do. 
There are three typical transformations often used in 
spectral methods.

• Laplacian: Given a symmetric matrix A=(aij)n×n 
with aij≥0, we define Laplacian LA=(lij) n×n of A 
as
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 The spectral graph theory takes this transforma-
tion (Chung, 1997).

• Variant of Laplacian: Given a symmetric matrix 
A=(aij)n×n with aij≥0, we define the variant of 
Laplacian TA=(tij) n×n of A to be TA=D-1/2(S-I)D-

1/2. It can be easily proved that LA+TA=2I. This 
transformation of the matrix is often used (Li et 
al., 2004; Ng et al., 2001).

• Transition (or Stochastic) Matrix: Given a sym-
metric matrix A=(aij)n×n with aij≥0, we define the 
transition matrix PA=(pij) n×n of A satisfying pij=aij/di 
so that the sum of each row is 1. Apparently, P is 
a stochastic matrix, in the sense that it describes 

the transition probabilities of a Markov chain in 
the natural way.

In the definitions of these three matrices, i ijj
d a= ∑

is the sum of the i-th row vector and D=diag(d1, …, dn). 
These three matrices have real eigenvalues and eigen-
vectors. Moreover, the eigenvalues of Laplacian and the 
transition matrix lie in [0, 2] and [-1, 1], respectively. 
We can easily deduce from the relationship between 
LA and TA to obtain SPECTRUM(TA) = {1 − λ | λ ∈ 
SPECTRUM(LA)},  where SPECTRUM(•) represents 
the set of eigenvalues of a matrix. Hence, the eigen-
values of TA lie in [-1, 1] and all the conclusions and 
properties of LA are also applicable to TA. Moreover, 
LA and TA have the same eigenvectors.

Relations to Graph

As a graph is represented by its adjacency matrix, 
there is a close relationship between the graph and 
the spectral components of its adjacency matrix. It is a 
long history to explore the fundamental properties of a 
graph from the view of the spectral components of this 
graph’s adjacency matrix in the area of mathematics. 
Especially, eigenvalues are closely related to almost all 
major invariants of graphs and thus, play a central role 
in the fundamental understanding of graphs. Based on 
this perspective, spectral graph theory has emerged and 
rapidly grown in recent years (Chung, 1997). Hence, 
many characteristics of spectral components of a 
matrix can be intuitively explained in terms of graphs 
and meanwhile graphs also can be analyzed from its 
spectral components. A notable case is the authority and 
hub vertices of the Web graph that is important to Web 
search as shown in HITS algorithm (Kleinberg, 1998). 
Another example is that the spectrum of the adjacency 
matrix of a graph can be analyzed to deduce its principal 
properties and structure, including the optimization 
information about cutting a graph. This view has been 
applied to discover and predict the clustering behavior 
of a similarity matrix before the actual clustering is 
performed (Li et al., 2004).
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