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INTRODUCTION

Graph-based data mining represents a collection of 
techniques for mining the relational aspects of data 
represented as a graph. Two major approaches to graph-
based data mining are frequent subgraph mining and 
graph-based relational learning. This chapter will focus 
on one particular approach embodied in the Subdue 
system, along with recent advances in graph-based su-
pervised learning, graph-based hierarchical conceptual 
clustering, and graph-grammar induction.

Most approaches to data mining look for associa-
tions among an entity’s attributes, but relationships 
between entities represent a rich source of information, 
and ultimately knowledge. The field of multi-relational 
data mining, of which graph-based data mining is a part, 
is a new area investigating approaches to mining this 
relational information by finding associations involv-
ing multiple tables in a relational database. Two main 
approaches have been developed for mining relational 
information: logic-based approaches and graph-based 
approaches.

Logic-based approaches fall under the area of induc-
tive logic programming (ILP). ILP embodies a number 
of techniques for inducing a logical theory to describe 
the data, and many techniques have been adapted to 
multi-relational data mining (Dzeroski & Lavrac, 2001; 
Dzeroski, 2003). Graph-based approaches differ from 
logic-based approaches to relational mining in several 
ways, the most obvious of which is the underlying rep-
resentation. Furthermore, logic-based approaches rely 
on the prior identification of the predicate or predicates 
to be mined, while graph-based approaches are more 
data-driven, identifying any portion of the graph that has 
high support. However, logic-based approaches allow 

the expression of more complicated patterns involv-
ing, e.g., recursion, variables, and constraints among 
variables. These representational limitations of graphs 
can be overcome, but at a computational cost.

BACKGROUND

Graph-based data mining (GDM) is the task of find-
ing novel, useful, and understandable graph-theoretic 
patterns in a graph representation of data. Several ap-
proaches to GDM exist based on the task of identifying 
frequently occurring subgraphs in graph transactions, 
i.e., those subgraphs meeting a minimum level of sup-
port. Washio and Motoda (2003) provide an excellent 
survey of these approaches. We here describe four 
representative GDM methods.

Kuramochi and Karypis (2001) developed the FSG 
system for finding all frequent subgraphs in large graph 
databases. FSG starts by finding all frequent single and 
double edge subgraphs. Then, in each iteration, it gener-
ates candidate subgraphs by expanding the subgraphs 
found in the previous iteration by one edge. In each 
iteration the algorithm checks how many times the 
candidate subgraph occurs within an entire graph. The 
candidates, whose frequency is below a user-defined 
level, are pruned. The algorithm returns all subgraphs 
occurring more frequently than the given level.

Yan and Han (2002) introduced gSpan, which com-
bines depth-first search and lexicographic ordering to 
find frequent subgraphs. Their algorithm starts from all 
frequent one-edge graphs. The labels on these edges 
together with labels on incident vertices define a code 
for every such graph. Expansion of these one-edge 
graphs maps them to longer codes. Since every graph 
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can map to many codes, all but the smallest code are 
pruned. Code ordering and pruning reduces the cost of 
matching frequent subgraphs in gSpan. Yan and Han 
(2003) describe a refinement to gSpan, called Close-
Graph, which identifies only subgraphs satisfying the 
minimum support, such that no supergraph exists with 
the same level of support.

Inokuchi et al. (2003) developed the Apriori-based 
Graph Mining (AGM) system, which searches the 
space of frequent subgraphs in a bottom-up fashion, 
beginning with a single vertex, and then continually 
expanding by a single vertex and one or more edges. 
AGM also employs a canonical coding of graphs in 
order to support fast subgraph matching. AGM returns 
association rules satisfying user-specified levels of 
support and confidence.

The last approach to GDM, and the one discussed 
in the remainder of this chapter, is embodied in the 
Subdue system (Cook & Holder, 2000). Unlike the 
above systems, Subdue seeks a subgraph pattern that 
not only occurs frequently in the input graph, but also 
significantly compresses the input graph when each 
instance of the pattern is replaced by a single vertex. 
Subdue performs a greedy search through the space of 
subgraphs, beginning with a single vertex and expanding 
by one edge. Subdue returns the pattern that maximally 
compresses the input graph. Holder and Cook (2003) 
describe current and future directions in this graph-
based relational learning variant of GDM.

MAIN THRUST OF THE CHAPTER

As a representative of GDM methods, this section will 
focus on the Subdue graph-based data mining system. 
The input data is a directed graph with labels on ver-
tices and edges. Subdue searches for a substructure 
that best compresses the input graph. A substructure 
consists of a subgraph definition and all its occurrences 
throughout the graph. The initial state of the search is 
the set of substructures consisting of all uniquely labeled 
vertices. The only operator of the search is the Extend 
Substructure operator. As its name suggests, it extends 
a substructure in all possible ways by a single edge and 
a vertex, or by only a single edge if both vertices are 
already in the subgraph.

Subdue’s search is guided by the minimum descrip-
tion length (MDL) principle, which seeks to minimize 
the description length of the entire data set. The evalu-

ation heuristic based on the MDL principle assumes 
that the best substructure is the one that minimizes the 
description length of the input graph when compressed 
by the substructure. The description length of the 
substructure S given the input graph G is calculated 
as DL(G,S) = DL(S)+DL(G|S), where DL(S) is the 
description length of the substructure, and DL(G|S) is 
the description length of the input graph compressed 
by the substructure. Subdue seeks a substructure S that 
minimizes DL(G,S).

The search progresses by applying the Extend Sub-
structure operator to each substructure in the current 
state. The resulting state, however, does not contain all 
the substructures generated by the Extend Substruc-
ture operator. The substructures are kept on a queue 
and are ordered based on their description length (or 
sometimes referred to as value) as calculated using the 
MDL principle. The queue’s length is bounded by a 
user-defined constant.

The search terminates upon reaching a user-speci-
fied limit on the number of substructures extended, or 
upon exhaustion of the search space. Once the search 
terminates and Subdue returns the list of best substruc-
tures found, the graph can be compressed using the best 
substructure. The compression procedure replaces all 
instances of the substructure in the input graph by single 
vertices, which represent the substructure’s instances. 
Incoming and outgoing edges to and from the replaced 
instances will point to, or originate from the new vertex 
that represents the instance. The Subdue algorithm can 
be invoked again on this compressed graph.

Figure 1 illustrates the GDM process on a simple 
example. Subdue discovers substructure S1, which is 
used to compress the data. Subdue can then run for a 
second iteration on the compressed graph, discovering 
substructure S2. Because instances of a substructure can 
appear in slightly different forms throughout the data, 
an inexact graph match, based on graph edit distance, 
is used to identify substructure instances. 

Most GDM methods follow a similar process. 
Variations involve different heuristics (e.g., frequency 
vs. MDL) and different search operators (e.g., merge 
vs. extend).

Graph-Based Hierarchical Conceptual 
Clustering

Given the ability to find a prevalent subgraph pattern 
in a larger graph and then compress the graph with this 
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