
920 Section: Partitioning

A Genetic Algorithm for Selecting Horizontal
Fragments
Ladjel Bellatreche
Poitiers University, France

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Decision support applications require complex queries,
e.g., multi way joins defining on huge warehouses usu-
ally modelled using star schemas, i.e., a fact table and a
set of data dimensions (Papadomanolakis & Ailamaki,
2004). Star schemas have an important property in
terms of join operations between dimensions tables and
the fact table (i.e., the fact table contains foreign keys
for each dimension). None join operations between
dimension tables. Joins in data warehouses (called star
join queries) are particularly expensive because the
fact table (the largest table in the warehouse by far)
participates in every join and multiple dimensions are
likely to participate in each join.

To speed up star join queries, many optimization
structures were proposed: redundant structures (ma-
terialized views and advanced index schemes) and
non redundant structures (data partitioning and paral-
lel processing). Recently, data partitioning is known
as an important aspect of physical database design
(Sanjay, Narasayya & Yang, 2004; Papadomanolakis
& Ailamaki, 2004). Two types of data partitioning
are available (Özsu & Valduriez, 1999): vertical and
horizontal partitioning. Vertical partitioning allows
tables to be decomposed into disjoint sets of columns.
Horizontal partitioning allows tables, materialized
views and indexes to be partitioned into disjoint sets
of rows that are physically stored and usually accessed
separately. Contrary to redundant structures, data parti-
tioning does not replicate data, thereby reducing storage
requirement and minimizing maintenance overhead.
In this paper, we concentrate only on horizontal data
partitioning (HP).

HP may affect positively (1) query performance, by
performing partition elimination: if a query includes
a partition key as a predicate in the WHERE clause,
the query optimizer will automatically route the query
to only relevant partitions and (2) database manage-
ability: for instance, by allocating partitions in differ-

ent machines or by splitting any access paths: tables,
materialized views, indexes, etc. Most of database
systems allow three methods to perform the HP using
PARTITION statement: RANGE, HASH and LIST
(Sanjay, Narasayya & Yang, 2004). In the range parti-
tioning, an access path (table, view, and index) is split
according to a range of values of a given set of columns.
The hash mode decomposes the data according to a
hash function (provided by the system) applied to the
values of the partitioning columns. The list partitioning
splits a table according to the listed values of a column.
These methods can be combined to generate composite
partitioning. Oracle currently supports range-hash and
range-list composite partitioning using PARTITION
- SUBPARTITION statement. The following SQL
statement shows an example of fragmenting a table
Student using range partitioning.

CREATE TABLE student (Student_ID Number(6),
Student_FName VARCHAR(25), Student-LName
VARCHAR(25), PRIMARY KEY (Student_ID) PAR-
TITION BY RANGE (student_LN) (PARTITION stu-
dent_ae VALUES LESS THAN (‘F%’) TABLESPACE
part1, PARTITION student_fl VALUES LESS THAN
(‘M%’) TABLESPACE part2, PARTITION student_mr
VALUES LESS THAN (‘S%’) TABLESPACE part3,
PARTITION student_sz VALUES LESS THAN
(MAXVALUE) TABLESPACE part4);

HP can also be combined with others optimization
structures like indexes, materialized views, and paral-
lel processing. Several work and commercial systems
show its utility and impact in optimizing OLAP queries
(Noaman & Barker, 1999, Sanjay, Narasayya & Yang,
2004; Stöhr, Märtens & Rahm, 2000). But none of
these studies has formalized the problem of selecting
a horizontal partitioning schema to speed up a set of
queries as optimization problem with constraint and
proposed selection algorithms.

 921

A Genetic Algorithm for Selecting Horizontal Fragments

G
Logically, two types of HP are distinguished (Ceri,

Negri & Pelagatti, 1982; Özsu & Valduriez, 1999):
(1) primary HP and (2) derived HP. The primary
HP consists in fragmenting a table T based only on
its attribute(s). The derived HP consists in splitting
a table S (e.g., the fact table of a given star schema)
based on fragmentation schemas of other tables (e.g.,
dimension tables). This type has been used in (Stöhr,
Märtens & Rahm, 2000). The primary HP may be used
in optimizing selection operations, while the second
in optimizing join and selection operations since it
pre-computes them.

BACKGROUND

The HP in relational data warehouses is more challeng-
ing compared to that in relational and object databases.
Several work and commercial systems show its utility
and impact in optimizing OLAP queries (Sanjay, Nara-
sayya & Yang, 2004; Stöhr, Märtens & Rahm,2000).
But none study has formalized the problem of select-
ing a horizontal partitioning schema to speed up a set
of queries as an optimization problem and proposed
selection algorithms.

This challenge is due to the several choices of par-
titioning schema (a fragmentation schema is the result
of the data partitioning process) of a star or snowflake
schemas:

1. Partition only the dimension tables using sim-
ple predicates defined on these tables (a simple
predicate p is defined by: p: Ai θ Value; where
Ai is an attribute, θ ∈{=, <, >, ≥, ≤}, and Value
∈ Domain(Ai)). This scenario is not suitable for
OLAP queries, because the sizes of dimension
tables are generally small compare to the fact
table. Most of OLAP queries access the fact
table, which is huge Therefore, any partitioning
that does not take into account the fact table is
discarded.

2. Partition only the fact table using simple predicates
defined on this table because it normally contains
millions of rows and is highly normalized. The
fact relation stores time-series factual data. The
fact table is composed of foreign keys and raw
data. Each foreign key references a primary key on
one of the dimension relations. These dimension

relations could be time, product, customer, etc. The
raw data represent the numerical measurement of
the organization such as sales amount, number of
units sold, prices and so forth. The raw data usu-
ally never contain descriptive (textual) attributes
because the fact relation is designed to perform
arithmetic operations such as summarization,
aggregation, average and so forth on such data.
In a data warehouse modelled by a star schema,
most of OLAP queries access dimension tables
first and after that to the fact table. This choice
is also discarded.

3. Partition some/all dimension tables using their
predicates, and then partition the fact table based
on the fragmentation schemas of dimension tables.
This approach is best in applying partitioning in
data warehouses. Because it takes into considera-
tion the star join queries requirements and the
relationship between the fact table and dimension
tables. In our study, we recommend the use of this
scenario.

Horizontal Partitioning Selection
Problem

Suppose a relational warehouse modelled by a star
schema with d dimension tables and a fact table F.
Among these dimension tables, we consider that g
tables are fragmented (g ≤ d), where each table Di (1
≤ i ≤ g) is partitioned into mi fragments: {Di1, Di2, …,
Dimi}, such as: Dij = ()

jicl iD , where clji and σ represent
a conjunction of simple predicates and the selection
predicate, respectively. Thus, the fragmentation schema
of the fact table F is defined as follows:

Fi = F ⌠ D1i ⌠ D2i ⌠ ... ⌠ Dgi, (1 ≤ i ≤ mi), where ⌠ rep-
resents the semi join operation.

Example

To illustrate the procedure of fragmenting the fact table
based on the fragmentation schemas of dimension
tables, let’s consider a star schema with three dimen-
sion tables: Customer, Time and Product and one fact
table Sales. Suppose that the dimension table Customer
is fragmented into two fragments CustFemale and
CustMale defined by the following clauses:

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/genetic-algorithm-selecting-horizontal-fragments/10930

Related Content

Cluster Analysis for Outlier Detection
Frank Klawonnand Frank Rehm (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp.

214-218).

www.irma-international.org/chapter/cluster-analysis-outlier-detection/10823

A Multi-Agent System for Handling Adaptive E-Services
Pasquale De Meo, Giovanni Quattrone, Giorgio Terracinaand Domenico Ursino (2009). Encyclopedia of Data

Warehousing and Mining, Second Edition (pp. 1346-1351).

www.irma-international.org/chapter/multi-agent-system-handling-adaptive/10996

Association Rule Mining
Yew-Kwong Woon (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 76-82).

www.irma-international.org/chapter/association-rule-mining/10801

Database Queries, Data Mining, and OLAP
Lutz Hamel (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 598-603).

www.irma-international.org/chapter/database-queries-data-mining-olap/10882

Learning Bayesian Networks
Marco F. Ramoniand Paola Sebastiani (2009). Encyclopedia of Data Warehousing and Mining, Second Edition

(pp. 1124-1128).

www.irma-international.org/chapter/learning-bayesian-networks/10962

http://www.igi-global.com/chapter/genetic-algorithm-selecting-horizontal-fragments/10930
http://www.igi-global.com/chapter/genetic-algorithm-selecting-horizontal-fragments/10930
http://www.irma-international.org/chapter/cluster-analysis-outlier-detection/10823
http://www.irma-international.org/chapter/multi-agent-system-handling-adaptive/10996
http://www.irma-international.org/chapter/association-rule-mining/10801
http://www.irma-international.org/chapter/database-queries-data-mining-olap/10882
http://www.irma-international.org/chapter/learning-bayesian-networks/10962

