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INTRODUCTION

Decision support applications require complex queries, 
e.g., multi way joins defining on huge warehouses usu-
ally modelled using star schemas, i.e., a fact table and a 
set of data dimensions (Papadomanolakis & Ailamaki, 
2004). Star schemas have an important property in 
terms of join operations between dimensions tables and 
the fact table (i.e., the fact table contains foreign keys 
for each dimension). None join operations between 
dimension tables. Joins in data warehouses (called star 
join queries) are particularly expensive because the 
fact table (the largest table in the warehouse by far) 
participates in every join and multiple dimensions are 
likely to participate in each join.

To speed up star join queries, many optimization 
structures were proposed:  redundant structures (ma-
terialized views and advanced index schemes) and 
non redundant structures (data partitioning and paral-
lel processing). Recently, data partitioning is known 
as an important aspect of physical database design 
(Sanjay, Narasayya & Yang, 2004; Papadomanolakis 
& Ailamaki, 2004). Two types of data partitioning 
are available (Özsu & Valduriez, 1999): vertical and 
horizontal partitioning. Vertical partitioning allows 
tables to be decomposed into disjoint sets of columns. 
Horizontal partitioning allows tables, materialized 
views and indexes to be partitioned into disjoint sets 
of rows that are physically stored and usually accessed 
separately. Contrary to redundant structures, data parti-
tioning does not replicate data, thereby reducing storage 
requirement and minimizing maintenance overhead.  
In this paper, we concentrate only on horizontal data 
partitioning (HP). 

HP may affect positively (1) query performance, by 
performing partition elimination: if a query includes 
a partition key as a predicate in the WHERE clause, 
the query optimizer will automatically route the query 
to only relevant partitions and (2) database manage-
ability: for instance, by allocating partitions in differ-

ent machines or by splitting any access paths: tables, 
materialized views, indexes, etc. Most of database 
systems allow three methods to perform the HP using 
PARTITION statement: RANGE, HASH and LIST 
(Sanjay, Narasayya & Yang, 2004). In the range parti-
tioning, an access path (table, view, and index) is split 
according to a range of values of a given set of columns. 
The hash mode decomposes the data according to a 
hash function (provided by the system) applied to the 
values of the partitioning columns. The list partitioning 
splits a table according to the listed values of a column. 
These methods can be combined to generate composite 
partitioning. Oracle currently supports range-hash and 
range-list composite partitioning using PARTITION 
- SUBPARTITION statement. The following SQL 
statement shows an example of fragmenting a table 
Student using range partitioning. 

CREATE TABLE student (Student_ID Number(6), 
Student_FName VARCHAR(25), Student-LName 
VARCHAR(25), PRIMARY KEY (Student_ID) PAR-
TITION BY RANGE (student_LN) (PARTITION stu-
dent_ae VALUES LESS THAN (‘F%’) TABLESPACE 
part1, PARTITION student_fl VALUES LESS THAN 
(‘M%’) TABLESPACE part2, PARTITION student_mr 
VALUES LESS THAN (‘S%’)  TABLESPACE part3, 
PARTITION student_sz VALUES LESS THAN 
(MAXVALUE) TABLESPACE part4);

HP can also be combined with others optimization 
structures like indexes, materialized views, and paral-
lel processing. Several work and commercial systems 
show its utility and impact in optimizing OLAP queries 
(Noaman & Barker, 1999, Sanjay, Narasayya & Yang, 
2004; Stöhr, Märtens & Rahm, 2000). But none of 
these studies has formalized the problem of selecting 
a horizontal partitioning schema to speed up a set of 
queries as optimization problem with constraint and 
proposed selection algorithms.
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Logically, two types of HP are distinguished (Ceri, 

Negri & Pelagatti, 1982; Özsu & Valduriez, 1999):   
(1) primary HP and (2) derived HP. The primary 
HP consists in fragmenting a table T based only on 
its attribute(s). The derived HP consists in splitting 
a table S (e.g., the fact table of a given star schema) 
based on fragmentation schemas of other tables (e.g., 
dimension tables). This type has been used in (Stöhr, 
Märtens & Rahm, 2000).  The primary HP may be used 
in optimizing selection operations, while the second 
in optimizing join and selection operations since it 
pre-computes them.  

BACKGROUND

The HP in relational data warehouses is more challeng-
ing compared to that in relational and object databases. 
Several work and commercial systems show its utility 
and impact in optimizing OLAP queries (Sanjay, Nara-
sayya & Yang, 2004; Stöhr, Märtens & Rahm,2000). 
But none study has formalized the problem of select-
ing a horizontal partitioning schema to speed up a set 
of queries as an optimization problem and proposed 
selection algorithms.

This challenge is due to the several choices of par-
titioning schema (a fragmentation schema is the result 
of the data partitioning process) of a star or snowflake 
schemas:

1. Partition only the dimension tables using sim-
ple predicates defined on these tables (a simple 
predicate p is defined by: p: Ai θ Value; where 
Ai is an attribute, θ ∈{=, <, >, ≥, ≤}, and Value 
∈ Domain(Ai)). This scenario is not suitable for 
OLAP queries, because the sizes of dimension 
tables are generally small compare to the fact 
table. Most of OLAP queries access the fact 
table, which is huge Therefore, any partitioning 
that does not take into account the fact table is 
discarded.

2. Partition only the fact table using simple predicates 
defined on this table because it normally contains 
millions of rows and is highly normalized. The 
fact relation stores time-series factual data.   The 
fact table is composed of foreign keys and raw 
data. Each foreign key references a primary key on 
one of the dimension relations. These dimension 

relations could be time, product, customer, etc. The 
raw data represent the numerical measurement of 
the organization such as sales amount, number of 
units sold, prices and so forth. The raw data usu-
ally never contain descriptive (textual) attributes 
because the fact relation is designed to perform 
arithmetic operations such as summarization, 
aggregation, average and so forth on such data. 
In a data warehouse modelled by a star schema, 
most of OLAP queries access dimension tables 
first and after that to the fact table. This choice 
is also discarded.

3. Partition some/all dimension tables using their 
predicates, and then partition the fact table based 
on the fragmentation schemas of dimension tables. 
This approach is best in applying partitioning in 
data warehouses. Because it takes into considera-
tion the star join queries requirements and the 
relationship between the fact table and dimension 
tables. In our study, we recommend the use of this 
scenario.

Horizontal Partitioning Selection 
Problem

Suppose a relational warehouse modelled by a star 
schema with d dimension tables and a fact table F. 
Among these dimension tables, we consider that g 
tables are fragmented (g ≤ d), where each table Di (1 
≤ i ≤ g) is partitioned into mi fragments: {Di1, Di2, …, 
Dimi}, such as: Dij = ( )

jicl iD , where clji and σ represent 
a conjunction of simple predicates and the selection 
predicate, respectively. Thus, the fragmentation schema 
of the fact table F is defined as follows:  

Fi = F ⌠  D1i ⌠  D2i ⌠   ... ⌠  Dgi, (1 ≤ i ≤ mi), where  ⌠   rep-
resents the semi join operation.

Example

To illustrate the procedure of fragmenting the fact table 
based on the fragmentation schemas of dimension 
tables, let’s consider a star schema with three dimen-
sion tables: Customer, Time and Product and one fact 
table Sales. Suppose that the dimension table Customer 
is fragmented into two fragments CustFemale and 
CustMale defined by the following clauses: 
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