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INTRODUCTION

In recent years, data streams have emerged as a new 
data type that has attracted much attention from the 
data mining community. They arise naturally in a 
number of applications (Brian et al., 2002), including 
financial service (stock ticker, financial monitoring), 
sensor networks (earth sensing satellites, astronomic 
observations), web tracking and personalization (web-
click streams). These stream applications share three 
distinguishing characteristics that limit the applicability 
of most traditional mining algorithms (Minos et al., 
2002; Pedro and Geoff, 2001): (1) the continuous ar-
rival rate of the stream is high and unpredictable; (2) 
the volume of data is unbounded, making it impractical 
to store the entire content of the stream; (3) in terms of 
practical applicability, stream mining results are often 
expected to be closely approximated the exact results 
as well as to be available at any time. Consequently, 
the main challenge in mining data streams is to develop 
effective algorithms that support the processing of 
stream data in one-pass manner (preferably on-line) 
whilst operating under system resources limitations 
(e.g., memory space, CPU cycles or bandwidth).  

This chapter discusses the above challenge in the 
context of finding frequent sets from transactional data 
streams. The problems will be presented and some 
effective methods, both from deterministic and proba-
bilistic approaches, are reviewed in details. The trade-
offs between memory space and accuracy of mining 
results are also discussed. Furthermore, the problems 
will be considered in three fundamental mining models 

for stream environments: landmark window, forgetful 
window and sliding window models.

BACKGROUND

Generally, the problem of finding frequent sets from a 
data stream can be stated as follows. Let  I = {a1, a2,...
am} be a set of items (or objects) and let X be an item-
set such as X ⊆ I. Given a transactional data stream, 
DS, which is a sequence of incoming transactions, (t1, 
t2,...,tn), where ti ⊆ I, the frequency of X is defined as 
the number of transactions in DS that contain X and its 
support is defined as the ratio between its frequency 
and the number of transactions in the stream. Then, the 
problem of mining frequent sets from data stream DS 
is to find all itemsets whose support is greater than a 
given threshold s ∈ (0,1) called minimum support. 

However, due to the unlimited size of streaming 
data, all transactions appearing in the stream DS are 
not always of equal importance. Rather, their useful-
ness is dependent upon applications. For example, 
some applications focus only on a fixed portion (most 
recently arriving) of the stream, while other applications 
consider all transactions seen so far; yet the transaction 
weight (or importance) is reduced gradually with time. 
This gives rise to different mining models: Landmark 
window model, Forgetful window model and Sliding 
window model. In the following section, most typical 
algorithms classified in these models will be discussed 
in details.
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MAIN FOCUS

This section presents and discusses some typical al-
gorithms addressing the problem of finding frequent 
sets from data streams. The mining model is first 
described, following it are the algorithm analysis and 
discussion.

Landmark Window Model 

In this model, frequent sets are computed from a set of 
contiguous transactions in the stream identified between 
a specific transaction in the past, called landmark, and 
the current transaction. Accordingly, one endpoint 
(landmark) is fixed, while the other gradually increases 
with the arrival of new transactions. This model is often 
suitable for off-line data streams where transactions 
usually arrive in batches (Gurmeet and Rajeev, 2002), 
for example, with warehouse applications where new 
batches of records are updated at regular time intervals. 
However, there are also many other online streaming ap-
plications employing this model (Johannes et al., 2001). 
For example, in a telecom transaction stream, the scope 
of the stream is captured on a daily basic. Accordingly, 
a set of landmarks is given to the mining system and 
the results are computed from the current point back 
to the immediately-preceding landmark. We discuss 
some typical algorithms in this mining model.

Lossy Counting (Gurmeet and Rajeev, 2002) is one 
of the first algorithms to find all frequent sets from 
entire transactional streams. It is a deterministic ap-
proach since the mining results are guaranteed within 
some error. Given an error threshold ε and a minimum 
support threshold s, Lossy Counting guarantees that 
all itemsets whose true frequency exceeds sN are in-
cluded in the mining results (where N is the number 
of transactions seen so far in the stream). Furthermore, 
the estimated frequency for each output itemset is 
guaranteed to be no more than its true frequency by 
an amount of εN. In Lossy Counting, the stream is 
divided into buckets, each has the same size of w = 
1/ε transactions and labeled with bucket ids, starting 
from 1. At transaction N, the bucket id is b = N/w. 
During the mining process, Lossy Counting maintains 
a synopsis S which is a set of entries (X, f, Δ), where X 
is an itemset, f is its estimated frequency, and ∆ is the 
maximal possible error in f. For each X found in the 
stream, its frequency will be incremented by 1 if it is 
found in S; otherwise a new entry is created with the 

value (X, f, b – 1), where b = N/w. At each bucket 
boundary (i.e., N ≡ 0 mod w), S is pruned by deleting 
all itemsets that have f + Δ ≤ b. The frequent itemsets 
are those having f ≥ (s – ε)N. 

To see how Lossy Counting approximates frequency 
errors, it is important to note that the stream is divided 
into equally sized buckets, and each itemset X will 
have its frequency tracked only if it appears frequently 
enough; i.e., on average, at least once on every bucket 
sized 1/ε. Accordingly, the deletion rule ensures that 
whenever f ≤ b – Δ, X will be deleted. Note that, (b – Δ) 
is the number of buckets since the last time X occurs 
frequently enough to be counted. This value is always 
no more than N/w which is the number of buckets so 
far in the stream. Consequently, the pruning condi-
tion always makes sure that f ≤ b – Δ ≤ N/w or f ≤ εN. 
This is also the maximal lost on counting frequency 
of every itemset. 

It is important to note that when Lossy Counting is 
applied to mining frequent itemsets, it needs to mine 
the stream in batch mode in order to avoid explicitly 
enumerating all subsets of every transaction. Conse-
quently, this approach may limit its applicability in 
some online streaming environments (Johannes et al., 
2001). Recently, this drawback has been addressed by 
EStream algorithm (Xuan Hong et al., 2006). In this 
algorithm, the error on the mining results is strictly 
guaranteed within a given threshold whilst the data 
stream is processed online. The basic idea of EStream 
is still based on the bucketing technique. However, it 
has been observed that when the transaction flow is 
processed online and the downward closure property 
is employed to find frequent sets, a longer itemset is 
usually being delayed counting until all its subsets are 
found potentially frequent. Accordingly, there will be 
a bigger error margin on frequent sets of larger sizes. 
Therefore, in EStream, the error (also frequency) of 
each itemset is identified precisely based on their 
length. This algorithm has been theoretically proven 
and guarantees that: (i) there is no error on frequency 
counting of 1-itemsets; (ii) for 2-itemsets, the maximal 
error on frequency counting is no more than εN; (iii) 
and for itemsets of length k > 2, the error is no more 
than 2εN (where k is the maximal length of frequent 
itemsets). 

The advantage of a deterministic approach is that it 
is able to produce all truly frequent itemsets and limit 
the maximal error on frequency counting. However, 
in order to provide this guarantee, a large amount of 
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