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INTRODUCTION

A genetic algorithm (GA) is a method used to find 
approximate solutions to difficult search, optimization, 
and machine learning problems (Goldberg, 1989) by 
applying principles of evolutionary biology to computer 
science. Genetic algorithms use biologically-derived 
techniques such as inheritance, mutation, natural selec-
tion, and recombination. They are a particular class of 
evolutionary algorithms.

Genetic algorithms are typically implemented as a 
computer simulation in which a population of abstract 
representations (called chromosomes) of candidate so-
lutions (called individuals) to an optimization problem 
evolves toward better solutions. Traditionally, solutions 
are represented in binary as strings of 0s and 1s, but dif-
ferent encodings are also possible. The evolution starts 
from a population of completely random individuals 
and happens in generations. In each generation, multiple 
individuals are stochastically selected from the current 
population, modified (mutated or recombined) to form 
a new population, which becomes current in the next 
iteration of the algorithm.

BACKGROUND

Operation of a GA

The problem to be solved is represented by a list of 
parameters, referred to as chromosomes or genomes by 
analogy with genome biology.  These parameters are 
used to drive an evaluation procedure. Chromosomes 
are typically represented as simple strings of data and 
instructions, in a manner not unlike instructions for a 
von Neumann machine.  A wide variety of other data 
structures for storing chromosomes have also been 
tested, with varying degrees of success in different 
problem domains.

Initially several such parameter lists or chromo-
somes are generated. This may be totally random, or 

the programmer may seed the gene pool with “hints” 
to form an initial pool of possible solutions. This is 
called the first generation pool.

During each successive generation, each organ-
ism is evaluated, and a measure of quality or fitness 
is returned by a fitness function. The pool is sorted, 
with those having better fitness (representing better 
solutions to the problem) ranked at the top. “Better” in 
this context is relative, as initial solutions are all likely 
to be rather poor.

The next step is to generate a second generation 
pool of organisms, which is done using any or all of the 
genetic operators: selection, crossover (or recombina-
tion), and mutation. A pair of organisms is selected for 
breeding. Selection is biased towards elements of the 
initial generation which have better fitness, though it 
is usually not so biased that poorer elements have no 
chance to participate, in order to prevent the solution 
set from converging too early to a sub-optimal or local 
solution. There are several well-defined organism selec-
tion methods; roulette wheel selection and tournament 
selection are popular methods.

Following selection, the crossover (or recombina-
tion) operation is performed upon the selected chro-
mosomes. Most genetic algorithms will have a single 
tweakable probability of crossover (Pc), typically 
between 0.6 and 1.0, which encodes the probability 
that two selected organisms will actually breed. A 
random number between 0 and 1 is generated, and if it 
falls under the crossover threshold, the organisms are 
mated; otherwise, they are propagated into the next 
generation unchanged. Crossover results in two new 
child chromosomes, which are added to the second 
generation pool. The chromosomes of the parents are 
mixed in some way during crossover, typically by sim-
ply swapping a portion of the underlying data structure 
(although other, more complex merging mechanisms 
have proved useful for certain types of problems.) This 
process is repeated with different parent organisms until 
there are an appropriate number of candidate solutions 
in the second generation pool.
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The next step is to mutate the newly created off-
spring. Typical genetic algorithms have a fixed, very 
small probability of mutation (Pm) of perhaps 0.01 or 
less. A random number between 0 and 1 is generated; 
if it falls within the Pm range, the new child organism’s 
chromosome is randomly mutated in some way, typi-
cally by simply randomly altering bits in the chromo-
some data structure.

These processes ultimately result in a second gen-
eration pool of chromosomes that is different from 
the initial generation. Generally the average degree 
of fitness will have increased by this procedure for the 
second generation pool, since only the best organisms 
from the first generation are selected for breeding. 
The entire process is repeated for this second genera-
tion: each organism in the second generation pool is 
then evaluated, the fitness value for each organism is 
obtained, pairs are selected for breeding, a third gen-
eration pool is generated, etc. The process is repeated 
until an organism is produced which gives a solution 
that is “good enough”.

A slight variant of this method of pool generation 
is to allow some of the better organisms from the first 
generation to carry over to the second, unaltered. This 
form of genetic algorithm is known as an elite selec-
tion strategy.

MAIN THRUST OF THE CHAPTER

Observations

There are several general observations about the gen-
eration of solutions via a genetic algorithm:

• GAs may have a tendency to converge towards 
local solutions rather than global solutions to the 
problem to be solved. 

• Operating on dynamic data sets is difficult, as 
genomes begin to converge early on towards solu-
tions which may no longer be valid for later data. 
Several methods have been proposed to remedy 
this by increasing genetic diversity somehow and 
preventing early convergence, either by increas-
ing the probability of mutation when the solution 
quality drops (called triggered hypermutation), 
or by occasionally introducing entirely new, 
randomly generated elements into the gene pool 
(called random immigrants). 

• As time goes on, each generation will tend to 
have multiple copies of successful parameter lists, 
which require evaluation, and this can slow down 
processing. 

• Selection is clearly an important genetic opera-
tor, but opinion is divided over the importance 
of crossover verses mutation. Some argue that 
crossover is the most important, while mutation 
is only necessary to ensure that potential solu-
tions are not lost. Others argue that crossover 
in a largely uniform population only serves to 
propagate innovations originally found by muta-
tion, and in a non-uniform population crossover is 
nearly always equivalent to a very large mutation 
(which is likely to be catastrophic). 

• Though GAs can be used for global optimization 
in known intractable domains, GAs are not always 
good at finding optimal solutions. Their strength 
tends to be in rapidly locating good solutions, 
even for difficult search spaces. 

Variants

The simplest algorithm represents each chromosome 
as a bit string. Typically, numeric parameters can be 
represented by integers, though it is possible to use 
floating point representations. The basic algorithm 
performs crossover and mutation at the bit level.

Other variants treat the chromosome as a list of 
numbers which are indexes into an instruction table, 
nodes in a linked list, hashes, objects, or any other 
imaginable data structure. Crossover and mutation are 
performed so as to respect data element boundaries. 
For most data types, specific variation operators can 
be designed. Different chromosomal data types seem 
to work better or worse for different specific problem 
domains.

Efficiency

Genetic algorithms are known to produce good results 
for some problems. Their major disadvantage is that 
they are relatively slow, being very computationally 
intensive compared to other methods, such as random 
optimization.

Recent speed improvements have focused on spe-
ciation, where crossover can only occur if individuals 
are closely-enough related.
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