
817

E

Section: Evolutionary Algorithms

Evolutionary Computation and Genetic
Algorithms
William H. Hsu
Kansas State University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

A genetic algorithm (GA) is a method used to find
approximate solutions to difficult search, optimization,
and machine learning problems (Goldberg, 1989) by
applying principles of evolutionary biology to computer
science. Genetic algorithms use biologically-derived
techniques such as inheritance, mutation, natural selec-
tion, and recombination. They are a particular class of
evolutionary algorithms.

Genetic algorithms are typically implemented as a
computer simulation in which a population of abstract
representations (called chromosomes) of candidate so-
lutions (called individuals) to an optimization problem
evolves toward better solutions. Traditionally, solutions
are represented in binary as strings of 0s and 1s, but dif-
ferent encodings are also possible. The evolution starts
from a population of completely random individuals
and happens in generations. In each generation, multiple
individuals are stochastically selected from the current
population, modified (mutated or recombined) to form
a new population, which becomes current in the next
iteration of the algorithm.

BACKGROUND

Operation of a GA

The problem to be solved is represented by a list of
parameters, referred to as chromosomes or genomes by
analogy with genome biology. These parameters are
used to drive an evaluation procedure. Chromosomes
are typically represented as simple strings of data and
instructions, in a manner not unlike instructions for a
von Neumann machine. A wide variety of other data
structures for storing chromosomes have also been
tested, with varying degrees of success in different
problem domains.

Initially several such parameter lists or chromo-
somes are generated. This may be totally random, or

the programmer may seed the gene pool with “hints”
to form an initial pool of possible solutions. This is
called the first generation pool.

During each successive generation, each organ-
ism is evaluated, and a measure of quality or fitness
is returned by a fitness function. The pool is sorted,
with those having better fitness (representing better
solutions to the problem) ranked at the top. “Better” in
this context is relative, as initial solutions are all likely
to be rather poor.

The next step is to generate a second generation
pool of organisms, which is done using any or all of the
genetic operators: selection, crossover (or recombina-
tion), and mutation. A pair of organisms is selected for
breeding. Selection is biased towards elements of the
initial generation which have better fitness, though it
is usually not so biased that poorer elements have no
chance to participate, in order to prevent the solution
set from converging too early to a sub-optimal or local
solution. There are several well-defined organism selec-
tion methods; roulette wheel selection and tournament
selection are popular methods.

Following selection, the crossover (or recombina-
tion) operation is performed upon the selected chro-
mosomes. Most genetic algorithms will have a single
tweakable probability of crossover (Pc), typically
between 0.6 and 1.0, which encodes the probability
that two selected organisms will actually breed. A
random number between 0 and 1 is generated, and if it
falls under the crossover threshold, the organisms are
mated; otherwise, they are propagated into the next
generation unchanged. Crossover results in two new
child chromosomes, which are added to the second
generation pool. The chromosomes of the parents are
mixed in some way during crossover, typically by sim-
ply swapping a portion of the underlying data structure
(although other, more complex merging mechanisms
have proved useful for certain types of problems.) This
process is repeated with different parent organisms until
there are an appropriate number of candidate solutions
in the second generation pool.

818

Evolutionary Computation and Genetic Algorithms

The next step is to mutate the newly created off-
spring. Typical genetic algorithms have a fixed, very
small probability of mutation (Pm) of perhaps 0.01 or
less. A random number between 0 and 1 is generated;
if it falls within the Pm range, the new child organism’s
chromosome is randomly mutated in some way, typi-
cally by simply randomly altering bits in the chromo-
some data structure.

These processes ultimately result in a second gen-
eration pool of chromosomes that is different from
the initial generation. Generally the average degree
of fitness will have increased by this procedure for the
second generation pool, since only the best organisms
from the first generation are selected for breeding.
The entire process is repeated for this second genera-
tion: each organism in the second generation pool is
then evaluated, the fitness value for each organism is
obtained, pairs are selected for breeding, a third gen-
eration pool is generated, etc. The process is repeated
until an organism is produced which gives a solution
that is “good enough”.

A slight variant of this method of pool generation
is to allow some of the better organisms from the first
generation to carry over to the second, unaltered. This
form of genetic algorithm is known as an elite selec-
tion strategy.

MAIN THRUST OF THE CHAPTER

Observations

There are several general observations about the gen-
eration of solutions via a genetic algorithm:

• GAs may have a tendency to converge towards
local solutions rather than global solutions to the
problem to be solved.

• Operating on dynamic data sets is difficult, as
genomes begin to converge early on towards solu-
tions which may no longer be valid for later data.
Several methods have been proposed to remedy
this by increasing genetic diversity somehow and
preventing early convergence, either by increas-
ing the probability of mutation when the solution
quality drops (called triggered hypermutation),
or by occasionally introducing entirely new,
randomly generated elements into the gene pool
(called random immigrants).

• As time goes on, each generation will tend to
have multiple copies of successful parameter lists,
which require evaluation, and this can slow down
processing.

• Selection is clearly an important genetic opera-
tor, but opinion is divided over the importance
of crossover verses mutation. Some argue that
crossover is the most important, while mutation
is only necessary to ensure that potential solu-
tions are not lost. Others argue that crossover
in a largely uniform population only serves to
propagate innovations originally found by muta-
tion, and in a non-uniform population crossover is
nearly always equivalent to a very large mutation
(which is likely to be catastrophic).

• Though GAs can be used for global optimization
in known intractable domains, GAs are not always
good at finding optimal solutions. Their strength
tends to be in rapidly locating good solutions,
even for difficult search spaces.

Variants

The simplest algorithm represents each chromosome
as a bit string. Typically, numeric parameters can be
represented by integers, though it is possible to use
floating point representations. The basic algorithm
performs crossover and mutation at the bit level.

Other variants treat the chromosome as a list of
numbers which are indexes into an instruction table,
nodes in a linked list, hashes, objects, or any other
imaginable data structure. Crossover and mutation are
performed so as to respect data element boundaries.
For most data types, specific variation operators can
be designed. Different chromosomal data types seem
to work better or worse for different specific problem
domains.

Efficiency

Genetic algorithms are known to produce good results
for some problems. Their major disadvantage is that
they are relatively slow, being very computationally
intensive compared to other methods, such as random
optimization.

Recent speed improvements have focused on spe-
ciation, where crossover can only occur if individuals
are closely-enough related.

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/evolutionary-computation-genetic-algorithms/10914

Related Content

Data Mining for Improving Manufacturing Processes
Lior Rokach (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 417-423).

www.irma-international.org/chapter/data-mining-improving-manufacturing-processes/10854

Bioinformatics and Computational Biology
Gustavo Camps-Vallsand Alistair Morgan Chalk (2009). Encyclopedia of Data Warehousing and Mining,

Second Edition (pp. 160-165).

www.irma-international.org/chapter/bioinformatics-computational-biology/10814

Scientific Web Intelligence
Mike Thelwall (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 1714-1719).

www.irma-international.org/chapter/scientific-web-intelligence/11049

Constraint-Based Pattern Discovery
Francesco Bonchi (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 313-319).

www.irma-international.org/chapter/constraint-based-pattern-discovery/10838

XML Warehousing and OLAP
Hadj Mahboubi (2009). Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 2109-2116).

www.irma-international.org/chapter/xml-warehousing-olap/11111

http://www.igi-global.com/chapter/evolutionary-computation-genetic-algorithms/10914
http://www.igi-global.com/chapter/evolutionary-computation-genetic-algorithms/10914
http://www.irma-international.org/chapter/data-mining-improving-manufacturing-processes/10854
http://www.irma-international.org/chapter/bioinformatics-computational-biology/10814
http://www.irma-international.org/chapter/scientific-web-intelligence/11049
http://www.irma-international.org/chapter/constraint-based-pattern-discovery/10838
http://www.irma-international.org/chapter/xml-warehousing-olap/11111

