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INTRODUCTION

As the abundance of collected data on products, pro-
cesses and service-related operations continues to grow 
with technology that facilitates the ease of data collec-
tion, it becomes important to use the data adequately 
for decision making.  The ultimate value of the data is 
realized once it can be used to derive information on 
product and process parameters and make appropriate 
inferences.

Inferential statistics, where information contained 
in a sample is used to make inferences on unknown but 
appropriate population parameters, has existed for quite 
some time (Mendenhall, Reinmuth, & Beaver, 1993; 
Kutner, Nachtsheim, & Neter, 2004).  Applications of 
inferential statistics to a wide variety of fields exist 
(Dupont, 2002; Mitra, 2006; Riffenburgh, 2006).

In data mining, a judicious choice has to be made 
to extract observations from large databases and de-
rive meaningful conclusions. Often, decision making 
using statistical analyses requires the assumption of 
normality. This chapter focuses on methods to trans-
form variables, which may not necessarily be normal, 
to conform to normality.   

BACKGROUND

With the normality assumption being used in many 
statistical inferential applications, it is appropriate to 
define the normal distribution, situations under which 
non-normality may arise, and concepts of data strati-
fication that may lead to a better understanding and 
inference-making.  Consequently, statistical procedures 
to test for normality are stated.

Normal Distribution

A continuous random variable, Y, is said to have a 
normal distribution, if its probability density function 
is given by the equation

 f(y)  =  2 21 exp[ ( ) / 2
2

y− − ]  ,  (1)

where µ and σ denote the mean and standard deviation, 
respectively, of the normal distribution.  When plotted, 
equation (1) resembles a bell-shaped curve that is sym-
metric about the mean (µ).  A cumulative distribution 
function (cdf), F(y), represents the probability P[Y ≤ 
y], and is found by integrating the density function 
given by equation (1) over the range (-∞, y).  So, we 
have the cdf for a normal random variable as

F(y)  =  2 21 exp[ ( ) / 2 ] .
2

y
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In general, P[a  ≤  Y  ≤  b]  =  F(b) – F(a).
A standard normal random variable, Z, is obtained 

through a transformation of the original normal random 
variable, Y, as follows:

Z  =  (Y - µ)/σ .     (3)

The standard normal variable has a mean of 0 and a 
standard deviation of 1 with its cumulative distribution 
function given by F(z).

Non-Normality of Data

Prior to analysis of data, careful consideration of the 
manner in which the data is collected is necessary.  The 
following are some considerations that data analysts 
should explore as they deal with the challenge of whether 
the data satisfies the normality assumption.

Data Entry Errors

Depending on the manner in which data is collected 
and recorded, data entry errors may highly distort the 
distribution.  For instance, a misplaced decimal point 
on an observation may lead that observation to be-
come an outlier, on the low or the high side. Outliers 
are observations that are “very large” or “very small” 
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compared to the majority of the data points and have a 
significant impact on the skewness of the distribution.  
Extremely large observations will create a distribution 
that is right-skewed, whereas outliers on the lower side 
will create a negatively-skewed distribution.  Both of 
these distributions, obviously, will deviate from normal-
ity.  If outliers can be justified to be data entry errors, 
they can be deleted prior to subsequent analysis,  which 
may lead the distribution of the remaining observations 
to conform to normality.

Grouping of Multiple Populations

Often times, the distribution of the data does not 
resemble any of the commonly used statistical distri-
butions let alone normality.  This may happen based 
on the nature of what data is collected and how it is 
grouped.  Aggregating data that come from different 
populations into one dataset to analyze, and thus creat-
ing one “superficial” population, may not be conducive 
to statistical analysis where normality is an associated 
assumption.  Consider, for example, the completion 
time of a certain task by operators who are chosen 
from three shifts in a plant.  Suppose there are inher-
ent differences between operators of the three shifts, 
whereas within a shift the performance of the operators 
is homogeneous.  Looking at the aggregate data and 
testing for normality may not be the right approach.  
Here, we may use the concept of data stratification 
and subdivide the aggregate data into three groups or 
populations corresponding to each shift.

Parametric versus Nonparametric Tests

While data from many populations may not necessarily 
be normal, one approach for dealing with this problem, 
when conducting parametric tests, is to determine a 
suitable transformation such that the transformed vari-
able satisfies the normality assumption.  Alternatively, 
one may consider using nonparametric statistical tests 
(Conover, 1999; Daniel, 1990) for making inferences.  
The major advantage of nonparametric tests is that 
they do not make any assumption on the form of the 
distribution.  Hence, such tests could be used for data 
that are not from normal distributions.  There are some 
disadvantages to nonparametric tests however.  One 
significant disadvantage deals with the power of the test.  
The power of a statistical test is its ability to identify 
and reject a null hypothesis when the null is false.  If the 

assumptions associated with a parametric test are satis-
fied, the power of the parametric test is usually larger 
than that of its equivalent nonparametric test.  This is 
the main reason for the preference of a parametric test 
over an equivalent nonparametric test.

Validation of Normality Assumption

Statistical procedures known as goodness-of-fit tests 
make use of the empirical cumulative distribution 
function (cdf) obtained from the sample versus the 
theoretical cumulative distribution function, based on 
the hypothesized distribution.  Moreover, parameters 
of the hypothesized distribution may be specified or 
estimated from the data.  The test statistic could be 
a function of the difference between the observed 
frequency, and the expected frequency, as determined 
on the basis of the distribution that is hypothesized.  
Goodness-of-fit tests may include chi-squared tests 
(Duncan, 1986), Kolmogorov-Smirnov tests (Massey, 
1951), or the Anderson-Darling test (Stephens, 1974), 
among others.  Along with such tests, graphical methods 
such as probability plotting may also be used.

Probability Plotting

In probability plotting, the sample observations are 
ranked in ascending order from smallest to largest.  
Thus, the observations x1, x2, …, xn are ordered as x(1), 
x(2), …, x(n), where x(1) denotes the smallest observation 
and so forth.  The empirical cumulative distribution 
function (cdf) of the ith ranked observation, x(i), is 
given by

0.5 .i
iF

n
−

=      (4)

The theoretical cdf, based on the hypothesized 
distribution, at x(i), is given by G(x(i)), where G(⋅) is 
calculated using specified parameters or estimates 
from the sample.  A probability plot displays the plot of 
x(i), on the horizontal axis, versus Fi and G(x(i)) on the 
vertical axis.  The vertical axis is so scaled such that 
if the data is from the hypothesized distribution, say 
normal, the plot of x(i) versus G(x(i)) will be a straight 
line.  Thus, departures of F(⋅) from G(⋅) are visually 
easy to detect.  The closer the plotted values of F(⋅) are 
to the fitted line, G(⋅), the stronger the support for the 
null hypothesis.  A test statistic is calculated where large 
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