
597

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 26

DOI: 10.4018/978-1-4666-6026-7.ch026

Software Evolution
Visualization:

Status, Challenges, and
Research Directions

ABSTRACT

Software Visualization is the field of Software Engineering that aims to help people to understand soft-
ware through the use of visual resources. It can be effectively used to analyze and understand the large
amount of data produced during software evolution. Several Software Evolution Visualization (SEV)
approaches have been proposed. The goals of the proposed approaches are varied, and they try to help
programmers and managers to deal with software evolution in their daily software activities. Despite
their goals, their applicability in real development scenarios is questionable. In this chapter, the authors
discuss the current state of the art and challenges in software evolution visualization, presenting issues
and problems related to the area, and they propose some solutions and recommendations to circumvent
them. Finally, the authors discuss some research directions for the SEV domain.

INTRODUCTION

Software evolution generally deals with large
amounts of data that originates from heterogeneous
sources such as Software Configuration Manage-
ment (SCM) repositories, Bug Tracking Systems
(BTS), mailing and project discussion lists. One
of the key aspects of software evolution is to build

theories and models that enable us to understand
the past and present, as well as predict future prop-
erties related to software maintenance activities,
and hence support software maintenance tasks.

Software Visualization (SoftVis) is the field
of Software Engineering (SE) that aims to help
people to understand software through the use
of visual resources (Diehl, 2007), and it can be

Renato Lima Novais
Federal Institute of Bahia, Brazil

Manoel Gomes de Mendonça Neto
Fraunhofer Project Center for Software and Systems Engineering at UFBA, Brazil

598

Software Evolution Visualization
﻿

effectively used to analyze and understand the
large amount of data produced during software
evolution. For this reason, many researchers have
been proposing Software Evolution Visualization
(SEV) tools (Kuhn, Erni, Loretan, Nierstrasz,
2010)(Voinea, Lukkien & Telea, 2007)(Fischer
& Gall, 2004)(German, Hindle & Jordan, 2006)
(Cepda, Magdaleno, Murta & Werner, 2010)(Eick,
Steffen & Sumner Jr, 1992). In general, these tools
analyze the evolution of the software with respect
to a set of software maintenance related questions.

Despite the goals of the software evolution vi-
sualization approaches, most have yet to be used in
industrial environments. SEV approaches usually
provide good and attractive visual metaphors, but
how to use them within the software development
process remains an open question. Several SEV
tools are proposed as proof of concepts that is not
evolved anymore.

This chapter covers Software Evolution Visual-
ization (SEV) approaches, providing information
about how SEV research is structured, synthesiz-
ing current evidence on the goals of the proposed
approaches and identifying key challenges for its
use in practice. This text is based on a mapping
study that was carried out to analyze how the SEV
area is structured (Novais et al., 2013a).

In the following sections we will discuss the
current state and challenges in software evolution
visualization. We will present issues and problems
related to the area, and propose some solutions
and recommendations to circumvent them. Finally,
we will discuss some research directions for the
SEV domain.

BACKGROUND

Software Visualization

Software visualization (SoftVis) can be defined
as the mapping of any kind of software artifact in
graphic representations (Koschke, 2003) (Roman
& Cox, 1992). SoftVis is very helpful because it

transforms intangible software entities and their
relationships into visual metaphors that are easily
interpretable by human beings. Consider coupling
among software modules as an example. Using a
graph as a visual metaphor, these modules can be
represented as nodes and the coupling information
can be represented as directed edges to build an
intuitive visual metaphor for their dependency.
Without a visual representation, the only way to
analyze this information would be to look inside
the source code or at a table of software metrics,
a laborious task or one of great cognitive effort.

There are several classification taxonomies for
SoftVis. Some divide SoftVis according to type
of visualized object. Diehl (2007), for example,
divides software visualization into visualizing
the structure, behavior and evolution of the soft-
ware. Structure refers to visualizing static parts
of the software. Behavior refers to visualizing
the execution of the software. Evolution refers to
visualizing how software evolves (Diehl, 2007).
SoftVis can also be classified according to the
metaphors it uses to represent software. Among
others, visualizations can use iconographic, pixel-
based, matrix-based, graph-based and hierarchical
metaphors (Keim, 2002) (Ferreira de Oliveira &
Levkowitz, 2003).

Software can also be visually analyzed from
different perspectives (Carneiro et al., 2008)(Car-
neiro, Santanna, & Mendonça, 2010)(Carneiro et
al., 2010)(Carneiro & Mendonça, 2013). In this
case, visualization can be classified according to
the point of view it provides to engineers to explore
a software system. The perspectives concern to
the way in which we look to the software. In the
context of software, the perspective may be rep-
resented by a set of coordinated views designed
to represent a group of properties of the software.

There are several software perspectives (Novais
et al., 2013a). Common perspectives in object-
oriented programming are Structural, Inheritance
and Coupling. Common perspectives in software
evolution are Change and Authorship. For ex-
ample, one might be interested in investigating

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/software-evolution-visualization/108638

Related Content

European National Educational School Authorities' Actions Regarding Open Content and Open

Source Software in Education
Riina Vuorikariand Karl Sarnow (2009). Software Applications: Concepts, Methodologies, Tools, and

Applications (pp. 2046-2063).

www.irma-international.org/chapter/european-national-educational-school-authorities/29494

RuCAS: Rule-Based Framework for Managing Context-Aware Services with Distributed Web

Services
Hiroki Takatsuka, Sachio Saiki, Shinsuke Matsumotoand Masahide Namamura (2015). International

Journal of Software Innovation (pp. 57-68).

www.irma-international.org/article/rucas/126616

Process Models of SDLCs: Comparison and Evolution
Laura C. Rodriguez, Manuel Mora, Miguel Vargas Martin, Rory O’Connorand Francisco Alvarez (2009).

Handbook of Research on Modern Systems Analysis and Design Technologies and Applications (pp. 76-

89).

www.irma-international.org/chapter/process-models-sdlcs/21062

Design Churn as Predictor of Vulnerabilities?
Aram Hovsepyan, Riccardo Scandariato, Maximilian Steffand Wouter Joosen (2014). International Journal

of Secure Software Engineering (pp. 16-31).

www.irma-international.org/article/design-churn-as-predictor-of-vulnerabilities/118146

Case Study of Agile Security Engineering: Building Identity Management for a Government

Agency
Kalle Rindell, Sami Hyrynsalmiand Ville Leppänen (2017). International Journal of Secure Software

Engineering (pp. 43-57).

www.irma-international.org/article/case-study-of-agile-security-engineering/179643

http://www.igi-global.com/chapter/software-evolution-visualization/108638
http://www.irma-international.org/chapter/european-national-educational-school-authorities/29494
http://www.irma-international.org/article/rucas/126616
http://www.irma-international.org/chapter/process-models-sdlcs/21062
http://www.irma-international.org/article/design-churn-as-predictor-of-vulnerabilities/118146
http://www.irma-international.org/article/case-study-of-agile-security-engineering/179643

