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INTRODUCTION

The genetic basis for some human diseases, in which 
one or a few genome regions increase the probability 
of acquiring the disease, is fairly well understood. 
For example, the risk for cystic fibrosis is linked to 
particular genomic regions.  Identifying the genetic 
basis of more common diseases such as diabetes has 
proven to be more difficult, because many genome 
regions apparently are involved, and genetic effects are 
thought to depend in unknown ways on other factors, 
called covariates, such as diet and other environmental 
factors (Goldstein and Cavalleri, 2005). 

Genome-wide association studies (GWAS) aim to 
discover the genetic basis for a given disease. The main 
goal in a GWAS is to identify genetic variants, single 
nucleotide polymorphisms (SNPs) in particular, that 
show association with the phenotype, such as “disease 
present” or “disease absent” either because they are 
causal, or more likely, because they are statistically 
correlated with an unobserved causal variant (Goldstein 
and Cavalleri, 2005).  A GWAS can analyze “by DNA 
site” or “by multiple DNA sites. ” In either case, data 
mining tools (Tachmazidou, Verzilli, and De Lorio, 
2007) are proving to be quite useful for understanding 
the genetic causes for common diseases.

BACKGROUND

A GWAS involves genotyping many cases (typically 
1000 or more) and controls (also 1000 or more) at a large 
number (104 to 106) of markers throughout the genome. 
These markers are usually SNPs.  A SNP occurs at a 
DNA site if more than one nucleotide (A, C, T, or G) is 
found within the population of interest, which includes 
the cases (which have the disease being studied) and 
controls (which do not have the disease). For example, 
suppose the sequenced DNA fragment from subject 1 
is AAGCCTA and from subject 2 is AAGCTTA. These 

contain a difference in a single nucleotide. In this case 
there are two alleles (“alleles” are variations of the 
DNA in this case), C and T. Almost all common SNPs 
have only two alleles, often with one allele being rare 
and the other allele being common. 

Assume that measuring the DNA at millions of sites 
for thousands of individuals is feasible. The resulting 
measurements for n1 cases and n2 controls are partially 
listed below, using arbitrary labels of the sites such 
as shown below. Note that DNA site 3 is a candidate 
for an association, with T being the most prevalent 
state for cases and G being the most prevalent state 
for controls.

 123    456  789 ... 
Case 1: AAT  CTA TAT ...
Case 2: A* T  CTC TAT …
...
Case n1: AAT  CTG TAT ...

Control 1: AAG  CTA TTA  ...
Control 2: AAG  CTA TTA ...
...
Control n2: AAG  CTA TTA  ...

Site 6 is also a candidate for an association, with 
state A among the controls and considerable variation 
among the cases. The * character (case 2) can denote 
missing data, an alignment character due to a deletion 
mutation, or an insertion mutation, etc. (Toivonen et 
al., 2000).

In this example, the eye can detect such associa-
tion candidates “by DNA site.” However, suppose the 
collection of sites were larger and all n1 cases and 
n2 controls were listed, or that the analysis were “by 
haplotype.” In principle, the haplotype (one “half” of 
the genome of a paired-chromosome species such as 
humans) is the entire set of all DNA sites in the entire 
genome. In practice, haplotype refers to the sequenced 
sites, such as those in a haplotype mapping (HapMap, 
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2005) involving SNPs as we focus on here.  Both a 
large “by DNA site” analysis and a haplotype analysis, 
which considers the joint behavior of multiple DNA 
sites, are tasks that are beyond the eye’s capability.

Using modern sequencing methods, time and bud-
get constraints prohibit sequencing all DNA sites for 
many subjects (Goldstein and Cavalleri, 2005). Instead, 
a promising shortcut involves identifying haplotype 
blocks (Zhang and Jin, 2003; Zhang et al., 2002). A 
haplotype block is a homogeneous region of DNA 
sites that exhibit high linkage disequilibrium. Linkage 
disequilibrium between two DNA sites means there 
is negligible recombination during reproduction, thus 
“linking” the allelic states far more frequently than if 
the sites evolved independently. The human genome 
contains regions of very high recombination rates  
and regions of very low recombination rates (within 
a haplotype block).  If a haplotype block consists of 
approximately 10 sites, then a single SNP marker can 
indicate the DNA state (A, C, T, or G) for each site 
in the entire block for each subject, thus reducing the 
number of sequenced sites by a factor of 10. 

The HapMap project (HapMap, 2005) has led to an 
increase from approximately 2 million known SNPs to 
more than 8 million.  Many studies have reported low 
haplotype diversity with a few common haplotypes cap-
turing most of the genetic variation. These haplotypes 
can be represented by a small number of haplotype-
tagging SNPs (htSNPs). The presence of haplotype 
blocks makes a GWAS appealing, and summarizes the 
distribution of genetic variation throughout the genome. 
SNPs are effective genetic markers because of their 
abundance, relatively low mutation rate, functional 
relevance, ease of automating sequencing, and role as 
htSNPs. The HapMap project is exploiting the concept 
that if an htSNP correlates with phenotype, then some 
of the SNPs in its “association block” are likely to be 
causally linked to phenotype.

MAIN THRUST

Data Mining 

Data mining involves the extraction of potentially 
useful information from data.  Identifying genomic 
regions related to phenotype falls within the scope of 
data mining; we will limit discussion to a few specific 
data mining activities, which can all be illustrated us-

ing the following example. Consider the 10 haplotypes 
(rows) below (Tachmazidou et al., 2007) at each of 12 
SNPs (columns). The rare allele is denoted “1,” and 
the common allele is denoted “0.” By inspection of the 
pattern of 0s and 1s, haplotypes 1 to 4 are somewhat 
distinguishable from haplotypes 5 to 10. Multidimen-
sional scaling (Figure 1) is a method to display the 
distances between the 45 pairs of haplotypes (Venables 
and Ripley, 1999).  Although there are several evolution-
ary-model-based distance definitions, the Manhattan 
distance (the number of differences between a given 
pair of haplotype) is defensible, and was used to cre-
ate all three plots in Figure 1. The top plot in Figure 
1 suggests that there are two or three genetic groups. 
Ideally, if there are only two phenotypes (disease pres-
ent or absent), then there would be two genetic groups 
that correspond to the two phenotypes. In practice, be-
cause common diseases are proving to have a complex 
genetic component, it is common to have more than 
two genetic groups, arising, for example, due to racial 
or geographic subdivision structures in the sampled 
population (Liu et al., 2004).

haplotype1   1    0    0    0    1    0    1    0    0     0     1     0
haplotype2   1    0    0    0    1    0    1    0    0     0     0     0
haplotype3   1    0    0    0    0    0    1    0    0     0     0     0
haplotype4   1    0    0    0    0    0    0    0    0     1     0     0
haplotype5   0    1    0    0    0    1    0    0    0     0     0     1
haplotype6   0    1    0    0    0    1    0    0    0     0     0     0
haplotype7   0    0    0    1    0    1    0    0    0     0     0     0
haplotype8   0    0    0    1    0    1    0    0    1     0     0     0
haplotype9   0    0    0    1    0    1    0    1    1     0     0     0
haplotype10 0    0    1    0    0    1    0    0    0     0     0     0

The data mining activities described below include: 
defining genetics-model-based distance measures; 
selecting features; control of the false alarm rate; clus-
tering in the context of phylogenetic tree building, and 
genomic control using genetic model fitting to protect 
against spurious association between halplotype and 
disease status.

Defining genetics-Model-Based Distance 
Measures

Effective haplotype blocks in a GWAS requires small 
“within-block” variation relative to “between-block” 
variation. Variation can be defined and measured in 
several ways. One way is the Manhattan distance be-
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