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INTRODUCTION

Cluster analysis is a set of statistical models and al-
gorithms that attempt to find “natural groupings” of 
sampling units (e.g., customers, survey respondents, 
plant or animal species) based on measurements. 
The observable measurements are sometimes called 
manifest variables and cluster membership is called 
a latent variable.  It is assumed that each sampling 
unit comes from one of K clusters or classes, but the 
cluster identifier cannot be observed directly and can 
only be inferred from the manifest variables. See Bar-
tholomew and Knott (1999) and Everitt, Landau and 
Leese (2001) for a broader survey of existing methods 
for cluster analysis. 

Many applications in science, engineering, social 
science, and industry require grouping observations 
into “types.” Identifying typologies is challenging, 
especially when the responses (manifest variables) are 
categorical. The classical approach to cluster analysis 
on those data is to apply the latent class analysis (LCA) 
methodology, where the manifest variables are assumed 
to be independent conditional on the cluster identity. 
For example, Aitkin, Anderson and Hinde (1981) 
classified 468 teachers into clusters according to their 
binary responses to 38 teaching style questions. This 
basic assumption in classical LCA is often violated and 
seems to have been made out of convenience rather than 
it being reasonable for a wide range of situations. For 
example, in the teaching styles study two questions are 
“Do you usually allow your pupils to move around the 
classroom?” and “Do you usually allow your pupils to 
talk to one another?” These questions are mostly likely 
correlated even within a class.

BACKGROUND

This chapter focuses on the mixture-model approach 
to clustering. A mixture model represents a distribution 
composed of a mixture of component distributions, 
where each component distribution represents a differ-
ent cluster.  Classical LCA is a special case of the mixture 
model method.  We fit probability models to each cluster 
(assuming a certain fixed number of clusters) by taking 
into account correlations among the manifest variables. 
Since the true cluster memberships of the subjects are 
unknown, an iterative estimation procedure applicable 
to missing data is often required.

The classical LCA approach is attractive because 
of the simplicity of parameter estimation procedures. 
We can, however, exploit the correlation information 
between manifest variables to achieve improved cluster-
ing. Magidson and Vermunt (2001) proposed the latent 
class factor model where multiple latent variables are 
used to explain associations between manifest vari-
ables (Hagenaars, 1988; Magidson & Vermunt, 2001; 
Hagenaars & McCutcheon, 2007).  We will, instead, 
focus on generalizing the component distribution in 
the mixture model method.

MAIN FOCUS

Assume a random sample of n observations, where 
each comes from one of K unobserved classes. Random 
variable Y ∈ {1, …, K} is the latent variable, specifying 
the value of class membership. Let P(Y=k) = ηk specify 
the prior distribution of class membership, where 
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For each observation i = 1, …, n, the researcher ob-
serves p manifest variables Xi = (Xi1, …, Xip)′.  Given 
that an observation comes from class k (i.e., Y = k), 
the class-conditional distribution of X, denoted as 
fk(x;θk), is generally assumed to come from common 
distribution families. For example, classical LCA as-
sumes that the components of X are each multinomial 
and independent of each other for objects within the 
same class. Suppose each manifest variable takes only 
2 values, hereafter labeled generically “yes” and “no”, 
then P(Xj =xj | Y) is a Bernoulli trial.  Let π jk be the 
probability that someone in class k has a “yes” value 
to manifest variable Xj.  Then the class-conditional 
distribution, under the assumption of class-conditional 
independence, is 
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This assumption greatly reduces the number of 
parameters that must be estimated. However, in many 
cases, more flexible distributions should be developed 
to allow for improved clustering.

Component Distributions

In general, fk(x;θk) can take any component distribution. 
However, due to the constraint of identifiableness and 
the computing requirement for parameter estimation, 
only two component distributions, to our best knowl-
edge, have been proposed in the literature to address 
the correlation structure within each cluster.  Qu, Tan 
and Kutner (1996) proposed a random effects model 
that is a restricted version of the multivariate Probit 
model. The conditional dependence is modeled by sub-
ject-specific random variables.  The manifest variables 
are correlated because of the correlations between the 
underlying normal random variables in addition to 
the class membership. The correlation matrix in the 
component distribution of the random effects model 
has a restricted structure which makes it less appealing 
(Tamhane, Qiu & Ankenman, 2006). 

Tamhane, Qiu and Ankenman (2006) provide an-
other general-purpose multivariate Bernoulli distribu-
tion, called the continuous latent variable (CLV) model, 
based on subject-specific uniform random variables.  
This proposed distribution can handle both positive 

and negative correlations for each component cluster. 
It is relatively flexible in the sense that the correlation 
matrix does not have any structural restrictions as in the 
random effects model. This approach has been applied 
to two real data sets (Tamhane, Qiu & Ankenman, 2006) 
and provided easily interpretable results.

Parameter Estimation

The model parameters (ηk and θk) are estimated with 
maximum likelihood. The probability density function 
of the mixture is
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where the vector ψ of unknown parameters consists of 
the mixture proportions ηk and class-conditional dis-
tribution parameters θk. Under the assumption that x1, 
x2, …, xn are independent observations, the incomplete 
log-likelihood function is given by
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which must be maximized with respect to parameters 
ηk and θk.  Due to the summation inside the logarithm, 
direct maximization is difficult, and the expectation-
maximization (EM) algorithm of Dempster, Laird and 
Rubin (1977) is generally used to obtain the parameter 
estimators.  See Bartholomew and Knott (1999, pp. 
137-139) for details. The EM algorithm is convenient 
to construct if there exist closed-form solutions to 
the maximum likelihood estimators (MLEs). When 
closed-form solutions do not exist, the more gen-
eral optimization procedures, such as quasi-Newton 
method, will be used. Generally speaking, there are no 
known ways of finding starting values that guarantee a 
global optimum, and different starting values will often 
produce different local maxima.  One solution to the 
starting-value problem is to run the optimization with 
multiple random starting values and select the one with 
the largest log-likelihood value.  Commercial software 
package such as Knitro® and LatentGold® solve this 
type of optimization problem.  There are also software 
packages in the public domain.a
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