2020

Category: Big Data Analysis

Relational Data Access for
Business Data Analytics

Veit Koppen

Otto-von-Guericke-University Magdeburg, Germany

Andreas Liibcke
regiocom LLC, Magdeburg, Germany

INTRODUCTION

Data, information, and knowledge are dramati-
cally increasing (Korth & Silberschatz, 1997;
Naydenova & Kaloyanova, 2010). Although,
Data Warehouses are a central access for busi-
ness data since the 90s, new technologies have
to be considered to achieve an efficient access
and processing of these multidimensional data.
Recently, new architectures have evolved that try
to optimize data access for certain applications.

Database systems (DBS) are pervasively used
for all business domains. Therefore, DBS have to
manage a huge amount of different requirements
for heterogeneous application domains. New data
management approaches are continuously devel-
oped, e.g.,new trends are NoSQL-DBMSs (Chang
et al., 2006; DeCandia et al., 2007), MapReduce
(Dean & Ghemawat, 2008), Cloud Computing
(Armbrustetal.,2009; Foster, Zhao, Raicu, & Lu,
2009; Buyya, Yeo, & Venugopal, 2008), to make
the growing amount of data manageable for new
application domains. However, these approaches
are developed for specific applications and need
a high degree of expert knowledge.

From a technical point of view, there exist
different opportunities to access, process, and
analyze data in a more efficient way. On the one
hand, the usage of hardware, due to decreasing
cost is often a suitable way. On the other hand,
this requires techniques that are developed or
optimized for main memory usage in data ware-
housing. Another possibility is to use specialized
storage models. Thus, it is possible to store data

DOI: 10.4018/978-1-4666-5202-6.ch182

on all aggregation levels in multidimensional
online analytical processing (MOLAP), e.g., the
data cube, or only the most interesting data, e.g.,
iceberg cubes. Furthermore, the data access can
be enhanced by considering the architecture. Since
the 70s, relational database systems use row stores,
that means, tuples (rows of a table) are stored
sequentially. In contrast, column stores store data
in such a way that attributes (columns of a table)
are stored sequentially. This enables efficiency for
dataaccess in the domain of data warehousing due
to a better access for aggregations. Another chal-
lenging optimization is the selection of a suitable
index structure. Multi-dimensional analyses have
to be supported. Dependent on domain, data, and
application scenario different index structures can
enhance data processing.

In this chapter, we provide an overview of
architectural decision. We focus on the storage
architecture for relational database systems.

Row and Column Stores Architecture

Relational database management systems
(DBMSs) are developed to manage data of daily
business and reduce paper trails of companies (e.g.,
financial institutions) (Astrahanetal., 1976). This
approach dominates the way of data management
that we know as online transaction processing
(OLTP). Nowadays, fast and accurate forecasts
for revenues and expenses are not enough. A
new application domain evolves that focuses on
analyses of data to support business decisions.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



Relational Data Access for Business Data Analytics

Codd, Codd and Salley (1993) define this type
of data analysis as online analytical processing
(OLAP). In line with others (Abadi, Madden, &
Hachem, 2008; Zukowski, Nes, & Boncz, 2008),
we state that two disjunctive application domains
forrelational data management exist with different
scopes, impacts, and limitations.

Row store database systems store tuples se-
quentially. Thus, it is necessary to load or access
all data attributes. In the context of OLTP, this
is a suitable and often efficient type to store and
access data. However, in data warehousing OLAP
is in focus, where only some data attributes, often
only one, have to be read. Thus, data access with
row stores, which read all attributes of data sets,
can be computational costly.

Nowadays, we have to decide between column
or row stores in the OLAP domain. In fact, column
stores are faster thanrow stores for OLAP workloads
(Abadi et al., 2008; Stonebraker et al., 2005). In
contrast to row stores, column stores partition data
column-wise, i.e., values of a column are stored
physically contiguous. This vertical partitioning is
advantageous for aggregations on single columns
that frequently occur in OLAP workloads. There
is no gain without a loss, column stores perform
worse on tuple and update operations because after
vertical partitioning, column stores have to recon-
struct tuples for these operations (Harizopoulos,
Liang, Abadi, & Madden, 2006; Abadi, Myers,
DeWitt, & Madden, 2007; Manegold, Boncz, Nes,
& Kersten, 2004). Compared to column stores, row
stores perform better on tuple operations without
reconstruction of tuples which is not necessary
for row stores. Although, this directly addresses
the storage level, optimization is also achieved at
query level. Due to the restriction to read access
data in OLAP, I/O cost are not very important,
instead CPU usage comes into focus.

To further reduce 1/O cost, data can be com-
pressed to transfer and process them. Compression
reduces the data amount in such a way that an
information loss is avoided. Due to the structure
of column stores, e.g., same data types are stored
together, they achieve better compression rates

and thus reduce amount of data to be transferred
as well as more data can be processed in main
memory. Furthermore, each column can be pro-
cessed with a different algorithm, which suites
most for the corresponding analysis query. Typical
compression techniques are run length encoding,
bitmaps, null suppression, dictionary encoding,
or more complex compression techniques such as
gzip or Lempel-Ziv. Compression can increase
efficiency of analysis by factor 10, however in
practice an increase of factor 3 is more realistic,
cf. (Abadi et al., 2008).

Another advantage of column stores is directly
achievedinthe contextof OLAP queries. Dueto ac-
cess of all attributes in row stores and for the reason
that OLAP queries only access a limited number
of attributes, column stores not only outperform
row stores in I/O cost but also for a reduced CPU
usage, because in arow store architecture selected
attributes have to be extracted in main memory.
Column stores only read these attributes that are
part of the query. It is also possible to read and
process complete blocks of attribute values. This
enables an array-like access. Modern hardware can
optimize the access and parallelization is possible
(loop pipelining). Besides, column stores need
CPU for decompression and tuple reconstruction.

Another question for column stores is at which
stage data attributes are connected to tuples.
There exist two different approaches, early and
late materialization. In early materialization, a
tuple is already reconstructed at data access. This
enables the usage of same operations as for row
stores. However, it means that tuples are processed
during query processing. Therefore, we use row
store algorithms and benefit from reduced storage
space and reduced transfer costs from physical
memory, e.g., HDD. Hence, column stores can
only outperform row stores if the query uses the
late materialization strategy. That means, com-
pressed data should be processed attribute-wise as
much as possible and a concatenation of attributes
should be done in a very late stage. Otherwise,
row stores can outperform column stores even if
they require a higher I/O.

2021




6 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/chapter/relational-data-access-for-business-data-

analytics/107390

Related Content

Big Data Analytics in Health Care

Keerthi Suneetha (2017). Handbook of Research on Advanced Data Mining Techniques and Applications
for Business Intelligence (pp. 240-249).
www.irma-international.org/chapter/big-data-analytics-in-health-care/178109

Copula-Based Multivariate Time Series Models
Iva Mihaylova (2014). Encyclopedia of Business Analytics and Optimization (pp. 536-548).
www.irma-international.org/chapter/copula-based-multivariate-time-series-models/107256

An Automatic User Interest Mining Technique for Retrieving Quality Data
Shilpa Sethiand Ashutosh Dixit (2017). International Journal of Business Analytics (pp. 62-79).
www.irma-international.org/article/an-automatic-user-interest-mining-technique-for-retrieving-quality-data/176927

Facial Skincare Journey: Consumer Needs Identification to Enhance Online Marketing
Intaka Piriyakul, Shawanluck Kunathikornkit, Montree Piriyakuland Rapepun Piriyakul (2022). International
Journal of Business Intelligence Research (pp. 1-19).

www.irma-international.org/article/facial-skincare-journey/297614

Champion for Business Intelligence: SMART Goals for Business Focused and Financially
Backed Results

Irina Dymarsky (2011). International Journal of Business Intelligence Research (pp. 22-36).
www.irma-international.org/article/champion-business-intelligence/53866



http://www.igi-global.com/chapter/relational-data-access-for-business-data-analytics/107390
http://www.igi-global.com/chapter/relational-data-access-for-business-data-analytics/107390
http://www.irma-international.org/chapter/big-data-analytics-in-health-care/178109
http://www.irma-international.org/chapter/copula-based-multivariate-time-series-models/107256
http://www.irma-international.org/article/an-automatic-user-interest-mining-technique-for-retrieving-quality-data/176927
http://www.irma-international.org/article/facial-skincare-journey/297614
http://www.irma-international.org/article/champion-business-intelligence/53866

