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Finite Automata Games:
Basic Concepts

INTRODUCTION

Automata based systems have been used exten-
sively in complex business modeling, for example, 
to represent Markov systems (e.g., Stewart et al., 
1995; Uysal & Dayar, 1998; Gusak et al., 2003; 
Fuh & Yeh, 2001; Sbeity et al., 2008), in the 
development of classification systems (Gérard et 
al., 2005), in the analysis of commuters behavior 
(van Ackere & Larsen, 2004), to design electricity 
markets (Bunn & Oliveira, 2007, 2008), in the 
planning of real-options (Oliveira, 2010a), to study 
human-computer interaction (Gmytrasiewicz & 
Lisetti, 2002; Altuntas et al., 2007; Kim et al., 
2010; Muller et al., 2013), to represent the rela-
tionship between emotions and reason (Oliveira, 
2010c), in devising product differentiation strat-
egies (Oliveira, 2010b), and in forecasting and 
production control (Liu et al., 2011).

The analysis of the behavior of such systems 
is very often based on the concepts of game 
theory, such as Nash equilibrium (e.g., Fuden-
berg & Tirole, 1991). The Nash equilibrium is 
a powerful tool for analyzing industries where 
there are strategic interdependences between 
players. However, it does not explain the process 
by which decision makers acquire equilibrium 
beliefs, failing to determine a unique equilibrium 
solution in many games, and, therefore, failing to 
predict, or prescribe, rational behavior (e.g., van 
Huyck et al., 1990; Samuelson, 1997; Fudenberg 
& Levine, 1998).

In games with multiple equilibria the Nash 
equilibrium fails to predict the players’ behaviors. 
In this case, empirical studies (e.g., Roth & Erev, 
1995) have shown that models of bounded rational-
ity predict better than the Nash equilibrium does 

how people, organizations and markets behave (at 
least in the short run). A first attempt from the 
game theory literature to address this issue was 
to refine the concept of Nash equilibrium by in-
cluding additional criteria. First, a player does not 
choose dominated strategies (Fudenberg & Tirole, 
1991, p. 8). Second, choices in information sets not 
in the equilibrium path must be optimal choices 
(in order to avoid non-credible threats). This is 
called the rationalizability criterion (Bernheim, 
1984; Pearce, 1984). However, the problem with 
equilibria selection still exists as different refine-
ments select different equilibria. Furthermore, 
rationalizable strategies may be too demanding 
as they assume common knowledge of rationality.

Therefore, in order to model complex games, 
possibly with multiple equilibria, computer models 
which incorporate boundedly rational players are 
used as a mechanism for inductive equilibrium 
selection, and to test the validity of the perfect-
rationality predictions. This methodological jump 
from perfect-rationality to bounded rationality has 
theoretical and philosophical implications. It cor-
responds to a switch from a “normative theory” to a 
“positive theory.” The normative theory prescribes 
what each player in a game should do in order to 
promote his interests optimally (von Neumann 
& Morgenstern, 1953; van Damme, 1991, p. 1), 
whereas the positive theory describes how agents 
actually decide, as this line of research tries to 
understand how people and institutions behave 
(e.g., Samuelson, 1997, p. 3).

Simon (1972) was the first to emphasize the 
need to model bounded rationality in order to 
capture human and organizational behavior: see 
Sent (2004) for a review of Herbert Simon’s work. 
As Aumann (1997) explains, people and organiza-
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tions use “rules of thumb” that they learned from 
experience when acting. In other words, people do 
not optimize even in simple decision problems, 
e.g., Salant (2011). This argument underlines the 
need to model the opponent’s behavior, which 
was formalized in Rubinstein (1986, 1998) using 
finite automata - see Hopcroft & Ullman (1979) or 
Cecherini-Silberstein et al. (2012) for an introduc-
tion to automata theory. In order for inference of 
the opponents’ strategic behavior to be possible 
some rules need to regulate the definition of 
strategies. Rubinstein (1986) proposed the finite 
automaton as a tool to model an agent’s behavior. 
Salant (2011) has used automata to implement 
choice rules. An automaton is a decision rule, or 
a strategy, consisting of a finite set of states, a 
transition function (that defines the rules of tran-
sition between states) and a behavioral function 
(defining an agent’s behavior in each state of the 
automaton). Rubenstein suggested that repeated 
games with finite automata could capture a player’s 
bounded rationality (considering automata with 
a bounded number of states). At the same time, 
the introduction of finite automata constrains the 
type of strategies played: only regular strategies 
are admissible (i.e., given the same input, a player 
reacts always in the same manner). It is noteworthy, 
however, that long before Rubinstein had proposed 
the automata game, Schreider (1964) presented 
the formalism of dynamic programming to solve 
discrete deterministic problems using finite au-
tomata and introduced its possible application to 
game theory. In automata theory there are four 
major central issues: the complexity of computing 
the best response automaton, the equilibrium in 
automata games, automata inference and, finally, 
the dynamics problem.

THE FINITE AUTOMATA GAME

An automata game in the extensive form is a 5-tuple
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N denotes the number of players. Zi represents 
a finite non-empty set of possible outcomes of 
the game, and each z Zi i∈  is a function of the 
actions of each player, z z a ai i i= ( )−, , where 

ai i∈ Σ  represents an action of player i and 
a i i− −∈ Σ  represents his opponents’ actions. The 
outcomes of the game represent the information 
received by each player at the end of every stage. 
This information, or outcome, is a function of the 
actions of each player in the stage game, and it is 
different for each one of the players, as each one 
only knows the outcome of his own actions. 
u u zi i

= ( )  represents the utility function of 

player i, i.e., it is the payoff a player i perceives 
to have received from his action, given the per-
ceived outcome. Qi  stands for a finite non-
empty set of internal states of player i. Σi  is a 
non-empty set of all possible actions of player i. 
The automata game G is an extensive form game 
where each player evolves a certain decision rule 
that may change at a certain iteration of the game. 
This decision rule, the automaton Ai, defines how 
a player reacts to the outcomes received from the 
environment.

A finite automaton used by the player i is a 
5-tuple A Q qi i i i i i= ( ), , , ,

0
Σ δ λ  in which: Qi is a 

finite non-empty set of internal states; qi
0

 is the 
initial internal state; Σi  is the set of all the pos-
sible actions; δi  is a transition function 
δi i i iQ Z Q: × →( )  and λi  is a behavioral func-

tion λi i iQ: →( )Σ  associating an action to each 

possible internal state. At stage one each player i 
plays λi iq

0( ) . At a stage t≥ 1 , after each player 

executing his actions with an outcome 
z a a
t
i i i i= ( )−λ , , each automaton Ai moves from 

the state q
t
i  to the state δi

t
i
t
iq z,( ) . Then each 

player i chooses a new move λi
t
iq +( )1 .

In an automata game, as Mor et al. (1996) put 
it, a player engages in three tasks at the same time: 
to define the strategy to play the game, to learn 
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