
761

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Category: Algorithms and Programming

DOI: 10.4018/978-1-4666-5202-6.ch071

Distributed Programming Models
for Big Data Analytics

INTRODUCTION

The term “Big Data” has seen an explosion in
interest in recent years. The major reasons for this
attention are: extremely large volumes of data are
being generated every second from varied sources
such as the Internet, social media, mobile devices,
sensors, and so on; cheap memory storage to store
large data is abundantly available; and there is a
sharp rise in computation capacity (Bell, Gray,
& Szalay, 2006). Many organizations continu-
ously store ever increasing large data resulting
from interactions with customers, product sales,
user recommendations, and so on. For example,
at Facebook, as more users joined the social net-
work and as more features were added to the site,
the amount of compressed data stored each day
went up from 5-6 TB to 10-15 TB in a matter of
six months (Thusoo, Shao, Anthony, Borthakur,
Jain, Sarma, Murthy, & Liu, 2010).

Timely and cost-effective analytics over this
“Big Data” has emerged as a key ingredient
for success in many businesses, scientific, and
government endeavors (Cohen, Dolan, Dunlap,
Hellerstein, & Welton, 2009). For example, Web
search engines and social networks capture and
analyze every user action on their sites to improve
site design, spam and fraud detection, and advertis-
ing opportunities (Herodotou, Lim, Luo, Borisov,
Dong, Cetin, & Babu, 2011). Other companies use
big data analytics to identify the most profitable
customers, to optimize their supply chains, and
to establish pricing in real time – to dramatically
boost their revenues and reputations. Analytics
has allowed Amazon to dominate online retailing
and turn a profit despite enormous investments
in growth and infrastructure (Davenport, 2006).

However, analytics on Big Data scale is a non
trivial task. The volume of Big Data far exceeds
the processing capacity of traditional data mining
methodologies. Traditional sequential algorithms
that work well with data measured in megabytes
and gigabytes fail when presented with large real
world data measured in terabytes and petabytes.
One solution for Big Data analytics is to develop
and execute parallel distributed applications
that process large amounts of data spread across
many compute nodes. Therefore, a programmer
designing and implementing distributed Big Data
Analytics algorithms is burdened with additional
complexities of distributed, parallel programming.

Inspired by functional programming lan-
guages. recent distributed parallel programming
models hide the parallelization complexities inside
libraries and runtime systems. A programmer is
provided high level primitives (API) to express
computation tasks; the model automatically par-
allelizes the tasks and executes them on a cluster
of shared nothing commodity compute nodes.
These models enhance the productivity of the
programmer by permitting focus on the solution
of the problem rather than the mundane tasks of
parallelization, and hence are suitable for Big
Data Analytics.

In this chapter, we present a survey of distrib-
uted programming models designed for general
purpose computing on commodity clusters.

BACKGROUND

Given the large volume of data, applications
that work on big data need to distribute data on
a cluster of processors, and processing has to be

Rakhi Saxena
Deshbandhu College, University of Delhi, India

D

762

carried out in parallel for computation to complete
in a reasonable amount of time (Dean, & Ghe-
mawat, 2010). However, building and debugging
distributed software remains extremely difficult.
Distributed applications require a developer to
orchestrate concurrent computation and com-
munication across machines, in a manner that is
robust to delays and failures. (Alvaro, Condie,
Conway, Elmeleegy, Hellerstein, & Sears, 2010).

Traditional parallel applications are developed
using communication-centric message passing
frameworks such as Message Passing Interface
(MPI) and Parallel Virtual Machine (PVM)
(Ekanayake, Li, Zhang, Gunarathne, Bae, Qiu,
& Fox, 2010). In developing such programs,
programmer has to deal with issues of concurrent
programming such as - scheduling tasks among
workers, transferring data between workers, load
balancing, synchronization among the workers,
and recovering from communication or proces-
sor failures. Parallel database systems have also
been used for large scale data analytics, however
they are expensive, difficult to administer and
lack fault-tolerance for long-running queries
(Pavlo, Paulson, Rasin, Abadi, DeWitt, Madden,
& Stonebraker, 2009).

More recently, data-centric programming
models have simplified the development of data
parallel, distributed applications and have proven
to be effective for implementation of large scale
machine learning algorithms (Chu, Kim, Lin,
Yu, Bradski, Ng, & Olukotun, 2007; He, Fang,
Luo, Govindaraju, & Wang, 2008). These models
present users with a simplified interface to express
computations and automatically take over the
onus of handling the parallelization/ concurrent
programming complexities.

The landmark paper from Google introduced
the Map Reduce programming model that pro-
vides an abstraction layer to simplify the design
and implementation of parallel algorithms. Many
other extensions of the Map Reduce paradigm
intend to overcome limitations or extend func-
tionality of Map Reduce. These models include
Map-Reduce-Merge (Yang, Dasdan, Hsiao, &

Parker, 2007), Twister (Ekanayake et al., 2010),
and PACT (Alexandrov, Ewen, Heimel, Hueske,
Kao, Markl, Nijkamp, & Warneke, 2011) among
others. Interestingly, because of the simplicity of
concept, Map Reduce has spawned a number of
other models following similar philoso phies and
these include Dryad (Isard, Budiu, Yu, Birrell, &
Fetterly, 2007), Sphere (Gu, & Grossman, 2009),
and Piccolo (Power, & Li, 2010) among others.

MAIN FOCUS

The growing demand for Big Data Analytics has
resulted in the development of novel program-
ming models to handle distributed processing of
data. Applications such as log analytics, customer
segmentation, and recommender systems work on
large existing and historical data and an organiza-
tion needs to respond quickly to changing market
conditions. Such data analytic applications can
benefit from a programming model that simpli-
fies fast, efficient parallel processing of these
terabytes of data.

Map Reduce is one such simple, yet powerful
programming model that enables easy develop-
ment of scalable applications. The abstraction of
these models cuts down on application develop-
ment time by freeing the programmer to focus on
the solution of the problem to solve rather than on
managing parallelization of the algorithm.

The original implementation of Map Reduce
has severe limitations – Map and Reduce tasks
are loosely synchronized, there is no communica-
tion between individual Map or Reduce tasks, no
iteration or recursion is possible, there is no direct
support for multiple job inputs, and it is assumed
that different nodes perform jobs at about the same
rate. These limitations were rectified by several
follow up research works. We survey programming
models that have been implemented based on the
original idea of Map Reduce and others that are
variants of the original concept. We categorize the
models surveyed as i) Map Reduce based Models
ii) Map Reduce Variants.

Distributed Programming Models for Big Data Analytics

DD

10 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/distributed-programming-models-for-big-data-

analytics/107279

Related Content

Net-Centric Assessment and Interoperability Testing
Supriya Ghosh (2010). Net Centricity and Technological Interoperability in Organizations: Perspectives and

Strategies (pp. 217-233).

www.irma-international.org/chapter/net-centric-assessment-interoperability-testing/39873

Using Web Link Analysis to Detect and Analyze Hidden Web Communities
Edna O.F. Reid (2004). Information and Communications Technology for Competitive Intelligence (pp. 57-

84).

www.irma-international.org/chapter/using-web-link-analysis-detect/22561

Neural Data Mining System for Trust-Based Evaluation in Smart Organizations
T. T. Wong (2006). Integration of ICT in Smart Organizations (pp. 159-186).

www.irma-international.org/chapter/neural-data-mining-system-trust/24065

Performance Measurement Systems and Firms' Characteristics: Empirical Evidences from

Nigerian Banks
Oyewo Babajide Michael (2015). International Journal of Business Analytics (pp. 67-83).

www.irma-international.org/article/performance-measurement-systems-and-firms-characteristics/126834

Analysis of the Relationship Between Sustainability and Software Performance
Koray Cirakand Hur Bersam Sidal Bolat (2022). International Journal of Business Analytics (pp. 1-13).

www.irma-international.org/article/analysis-of-the-relationship-between-sustainability-and-software-performance/298019

http://www.igi-global.com/chapter/distributed-programming-models-for-big-data-analytics/107279
http://www.igi-global.com/chapter/distributed-programming-models-for-big-data-analytics/107279
http://www.irma-international.org/chapter/net-centric-assessment-interoperability-testing/39873
http://www.irma-international.org/chapter/using-web-link-analysis-detect/22561
http://www.irma-international.org/chapter/neural-data-mining-system-trust/24065
http://www.irma-international.org/article/performance-measurement-systems-and-firms-characteristics/126834
http://www.irma-international.org/article/analysis-of-the-relationship-between-sustainability-and-software-performance/298019

