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Distributed Programming Models 
for Big Data Analytics

INTRODUCTION

The term “Big Data” has seen an explosion in 
interest in recent years. The major reasons for this 
attention are: extremely large volumes of data are 
being generated every second from varied sources 
such as the Internet, social media, mobile devices, 
sensors, and so on; cheap memory storage to store 
large data is abundantly available; and there is a 
sharp rise in computation capacity (Bell, Gray, 
& Szalay, 2006). Many organizations continu-
ously store ever increasing large data resulting 
from interactions with customers, product sales, 
user recommendations, and so on. For example, 
at Facebook, as more users joined the social net-
work and as more features were added to the site, 
the amount of compressed data stored each day 
went up from 5-6 TB to 10-15 TB in a matter of 
six months (Thusoo, Shao, Anthony, Borthakur, 
Jain, Sarma, Murthy, & Liu, 2010).

Timely and cost-effective analytics over this 
“Big Data” has emerged as a key ingredient 
for success in many businesses, scientific, and 
government endeavors (Cohen, Dolan, Dunlap, 
Hellerstein, & Welton, 2009). For example, Web 
search engines and social networks capture and 
analyze every user action on their sites to improve 
site design, spam and fraud detection, and advertis-
ing opportunities (Herodotou, Lim, Luo, Borisov, 
Dong, Cetin, & Babu, 2011). Other companies use 
big data analytics to identify the most profitable 
customers, to optimize their supply chains, and 
to establish pricing in real time – to dramatically 
boost their revenues and reputations. Analytics 
has allowed Amazon to dominate online retailing 
and turn a profit despite enormous investments 
in growth and infrastructure (Davenport, 2006).

However, analytics on Big Data scale is a non 
trivial task. The volume of Big Data far exceeds 
the processing capacity of traditional data mining 
methodologies. Traditional sequential algorithms 
that work well with data measured in megabytes 
and gigabytes fail when presented with large real 
world data measured in terabytes and petabytes. 
One solution for Big Data analytics is to develop 
and execute parallel distributed applications 
that process large amounts of data spread across 
many compute nodes. Therefore, a programmer 
designing and implementing distributed Big Data 
Analytics algorithms is burdened with additional 
complexities of distributed, parallel programming.

Inspired by functional programming lan-
guages. recent distributed parallel programming 
models hide the parallelization complexities inside 
libraries and runtime systems. A programmer is 
provided high level primitives (API) to express 
computation tasks; the model automatically par-
allelizes the tasks and executes them on a cluster 
of shared nothing commodity compute nodes. 
These models enhance the productivity of the 
programmer by permitting focus on the solution 
of the problem rather than the mundane tasks of 
parallelization, and hence are suitable for Big 
Data Analytics.

In this chapter, we present a survey of distrib-
uted programming models designed for general 
purpose computing on commodity clusters.

BACKGROUND

Given the large volume of data, applications 
that work on big data need to distribute data on 
a cluster of processors, and processing has to be 
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carried out in parallel for computation to complete 
in a reasonable amount of time (Dean, & Ghe-
mawat, 2010). However, building and debugging 
distributed software remains extremely difficult. 
Distributed applications require a developer to 
orchestrate concurrent computation and com-
munication across machines, in a manner that is 
robust to delays and failures. (Alvaro, Condie, 
Conway, Elmeleegy, Hellerstein, & Sears, 2010).

Traditional parallel applications are developed 
using communication-centric message passing 
frameworks such as Message Passing Interface 
(MPI) and Parallel Virtual Machine (PVM) 
(Ekanayake, Li, Zhang, Gunarathne, Bae, Qiu, 
& Fox, 2010). In developing such programs, 
programmer has to deal with issues of concurrent 
programming such as - scheduling tasks among 
workers, transferring data between workers, load 
balancing, synchronization among the workers, 
and recovering from communication or proces-
sor failures. Parallel database systems have also 
been used for large scale data analytics, however 
they are expensive, difficult to administer and 
lack fault-tolerance for long-running queries 
(Pavlo, Paulson, Rasin, Abadi, DeWitt, Madden, 
& Stonebraker, 2009).

More recently, data-centric programming 
models have simplified the development of data 
parallel, distributed applications and have proven 
to be effective for implementation of large scale 
machine learning algorithms (Chu, Kim, Lin, 
Yu, Bradski, Ng, & Olukotun, 2007; He, Fang, 
Luo, Govindaraju, & Wang, 2008). These models 
present users with a simplified interface to express 
computations and automatically take over the 
onus of handling the parallelization/ concurrent 
programming complexities.

The landmark paper from Google introduced 
the Map Reduce programming model that pro-
vides an abstraction layer to simplify the design 
and implementation of parallel algorithms. Many 
other extensions of the Map Reduce paradigm 
intend to overcome limitations or extend func-
tionality of Map Reduce. These models include 
Map-Reduce-Merge (Yang, Dasdan, Hsiao, & 

Parker, 2007), Twister (Ekanayake et al., 2010), 
and PACT (Alexandrov, Ewen, Heimel, Hueske, 
Kao, Markl, Nijkamp, & Warneke, 2011) among 
others. Interestingly, because of the simplicity of 
concept, Map Reduce has spawned a number of 
other models following similar philoso phies and 
these include Dryad (Isard, Budiu, Yu, Birrell, & 
Fetterly, 2007), Sphere (Gu, & Grossman, 2009), 
and Piccolo (Power, & Li, 2010) among others.

MAIN FOCUS

The growing demand for Big Data Analytics has 
resulted in the development of novel program-
ming models to handle distributed processing of 
data. Applications such as log analytics, customer 
segmentation, and recommender systems work on 
large existing and historical data and an organiza-
tion needs to respond quickly to changing market 
conditions. Such data analytic applications can 
benefit from a programming model that simpli-
fies fast, efficient parallel processing of these 
terabytes of data.

Map Reduce is one such simple, yet powerful 
programming model that enables easy develop-
ment of scalable applications. The abstraction of 
these models cuts down on application develop-
ment time by freeing the programmer to focus on 
the solution of the problem to solve rather than on 
managing parallelization of the algorithm.

The original implementation of Map Reduce 
has severe limitations – Map and Reduce tasks 
are loosely synchronized, there is no communica-
tion between individual Map or Reduce tasks, no 
iteration or recursion is possible, there is no direct 
support for multiple job inputs, and it is assumed 
that different nodes perform jobs at about the same 
rate. These limitations were rectified by several 
follow up research works. We survey programming 
models that have been implemented based on the 
original idea of Map Reduce and others that are 
variants of the original concept. We categorize the 
models surveyed as i) Map Reduce based Models 
ii) Map Reduce Variants.
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