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INTRODUCTION
 
The optimization of a cost function which has a number 
of local minima is a relevant subject in many important 
fields. For instance, the determination of the weights of 
learning machines depends in general on the solution 
of global optimization tasks (Haykin, 1999). A feature 
shared by almost all of the most common deterministic 
and stochastic algorithms for continuous non – linear 
optimization is that their performance is strongly af-
fected by their starting conditions. Depending on the 
algorithm, the correct selection of an initial point or set 
of points have direct consequences on the efficiency, 
or even on the possibility to find the global minima. 
Of course, adequate selection of seeds implies prior 
knowledge on the structure of the optimization task.  
In the absence of prior information, a natural choice 
is to draw seeds from a uniform density defined over 
the search space. Knowledge on the problem can be 
gained through the exploration of this space.

In this contribution is presented a method to estimate 
probability densities that describe the asymptotic be-
havior of general stochastic search processes over con-
tinuously differentiable cost functions. The relevance 
of such densities is that they give a description of the 
residence times over the different regions of the search 
space, after an infinitely long exploration. The preferred 
regions are those which minimize the cost globally, 
which is reflected in the asymptotic densities.  In first 
instance, the resulting densities can be used to draw 
populations of points that are consistent with the global 
properties of the associated optimization tasks.

BACKGROUND
 
Stochastic strategies for optimization are essential 
to most of the heuristic techniques used to deal with 
complex, unstructured global optimization problems 
(Pardalos, 2004). The roots of such methods can be 
traced back to the Metropolis algorithm (Metropolis, 
Rosenbluth, Rosenbluth, Teller & Teller, 1953), in-
troduced in the early days of scientific computing to 
simulate the evolution of a physical system to thermal 
equilibrium. This process is the base of the simulated 
annealing technique (Kirkpatrick, Gellat & Vecchi, 
1983), which makes use of the convergence to a global 
minimum in configurational energy observed in physi-
cal systems at thermal equilibrium as the temperature 
goes to zero. 

The method presented in this contribution is rooted 
in similar physical principles as those on which simu-
lated annealing type algorithms are based. However, 
in contrast with other approaches (Suykens, Verrelst & 
Vandewalle, 1998) (Gidas, 1995) (Parpas, Rustem & 
Pistikopoulos, 2006), the proposed method considers 
a density of points instead of Markov transitions of in-
dividual points. The technique is based in the interplay 
between Langevin and Fokker – Planck frameworks 
for stochastic processes, which is well known in the 
study of out of equilibrium physical systems (Risken, 
1984) (Van Kampen, 1992). Fokker - Planck equation 
has been already proposed for its application in search 
algorithms, in several contexts. For instance, it has been 
used to directly study the convergence of populations 
of points to global minima (Suykens, Verrelst & Vande-
walle, 1998), as a tool to demonstrate the convergence 
of simulated annealing type algorithms (Parpas, Rustem 
& Pistikopoulos, 2006) (Geman & Hwang, 1986), or 
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as a theoretical framework for Boltzmann type learn-
ing machines (Movellan & McClelland, 1993) (Kos-
matopoulos & Christodoulou, 1994). In the context of 
global optimization by populations of points, it has been 
proposed that the populations evolve under the time 
– dependent version of the Fokker – Planck equation, 
following a schedule for the reduction of the diffusion 
constant D (Suykens, Verrelst & Vandewalle, 1998). 

In our approach, the stationary version of the Fok-
ker – Planck equation is used to learn the long – term 
probability density of a general stochastic search 
process. This is achieved using linear operations and 
a relatively small number of evaluations of the given 
cost function.

STATIONARY DENSITY ESTIMATION 
ALGORITHM 

Consider the minimization of a cost function of the 
form V(x1, x2, ..., xn, ..., xN) with a search space defined 
over L1,n ≤ xn ≤ L2,n. A stochastic search process for this 
problem is modeled by
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where e(t) is an additive noise with zero mean. Equa-
tion (1), known as Langevin equation in the Statistical 
Physics literature (Risken, 1984) (Van Kampen, 1992), 
captures the basic properties of a general stochastic 
search strategy. Under an uncorrelated Gaussian noise 
with constant strength, Eq. (1) represents a search by 
diffusion, while a noise strength that is slowly varying 
in time gives a simulated annealing process. Notice 
that choosing an external noise of infinite amplitude, 
the dynamical influence of the cost function over the 
exploration process is lost, leading to a blind search. 
The model given by Eq. (1) can be interpreted as a 
nonlinear dynamical system composed by N interact-
ing particles. The temporal evolution of the probability 
density of such a system is described by a linear differ-
ential equation, the Fokker – Planck equation (Risken, 
1984) (Van Kampen, 1992),

2

2

x
pD

x
V

xdt
dp

∂
∂

+




∂
∂

∂
∂

=
   (2)

The approach proposed in this article is based on the 
notion of an infinitely long exploration of the search 
space. In the present model setup for the search, the 
process converges to a state described by the stationary 
solution of Eq. (2) (Berrones, 2007).  The form of this 
solution is of the well known Boltzmann type (Risken, 
1984) (Van Kampen, 1992). For optimization or devi-
ate generation purposes, its direct use would imply 
a high computational cost. Instead, a form of Gibbs 
sampling is proposed in order to estimate the marginal 
probability density p(xn) (the details of the following 
discussion can be consulted in (Berrones, 2007)). The 
one dimensional projection of Eq. (2) at t → ∞ leads to 
the following equation for the conditional cumulative 
distribution, y(xn | {xj ≠ xn})
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Therefore, the estimation of the analytical form of 
y(xn | {xj ≠ xn}) can be achieved by the substitution of 
the expansion
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into Eq. (3). The distribution obtained in this way can 
be used to draw points from the conditional density 
p(xn | {xj ≠ xn}). According to the principles of Gibbs 
sampling (Geman & Geman, 1984), the iteration of 
the previous steps over the N variables will produce a 
population sampled from the corresponding marginal 
densities p(xn). However, in our setup all the informa-
tion needed to characterize the densities is contained 
in the coefficients of the expansion (4). In this way, the 
stationary marginal densities associated to the N vari-
ables of the optimization problem, are learned through 
the averages of the coefficients over the iteration of the 
random deviate generation process. We call this basic 
procedure a Stationary Density Estimation Algorithm 
(SDEA). We have also named the method Stationary 
Fokker – Planck Machine (SFPM) in (Berrones, 2007), 
in order to indicate its relation with other methods 
(Suykens, Verrelst & Vandewalle, 1998) that make 
use of the Fokker – Planck equation to learn statistical 
features of stochastic search processes. However, in 
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