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INTRODUCTION 

The view of artificial neural networks as adaptive 
systems has lead to the development of ad-hoc generic 
procedures known as learning rules. The first of these is 
the Perceptron Rule (Rosenblatt, 1962), useful for single 
layer feed-forward networks and linearly separable 
problems. Its simplicity and beauty, and the existence 
of a convergence theorem made it a basic departure 
point in neural learning algorithms. This algorithm 
is a particular case of the Widrow-Hoff or delta rule 
(Widrow & Hoff, 1960), applicable to continuous 
networks with no hidden layers with an error function 
that is quadratic in the parameters.  

BACKGROUND

The first truly useful algorithm for feed-forward mul-
tilayer networks is the backpropagation algorithm 
(Rumelhart, Hinton & Williams, 1986), reportedly 
proposed first by Werbos (1974) and Parker (1982). 
Many efforts have been devoted to enhance it in a 
number of ways, especially concerning speed and reli-
ability of convergence (Haykin, 1994; Hecht-Nielsen, 
1990). The backpropagation algorithm serves in general 
to compute the gradient vector in all the first-order 
methods, reviewed below.

Neural networks are trained by setting values for 
the network parameters w to minimize an error func-
tion E(w). If this function is quadratic in w, then the 
solution can be found by solving a linear system of 
equations (e.g. with Singular Value Decomposition 
(Press, Teukolsky, Vetterling & Flannery, 1992)) or 
iteratively with the delta rule. The minimization is 
realized by a variant of a gradient descent procedure, 
whose ultimate outcome is a local minimum: a w* from 
which any infinitesimal change makes E(w*) increase, 
that may not correspond to one of the global minima. 
Different solutions are found by starting at different 
initial states. The process is also perturbed by round-

off errors. Given E(w) to be minimized and an initial 
state w0,  these methods perform for each iteration the 
updating step: 

wi+1=wi+αiu
i     (1)

where ui is the minimization direction (the direction in 
which to move) and αi∈R is the step size (how far to 
make a move in ui), also known as the learning rate in 
earlier contexts. For convenience, define ∆wi=wi+1-wi.  
Common stopping criteria are: 

1. A maximum number of presentations of D (epochs) 
is reached. 

2. A maximum amount of computing time has been 
exceeded. 

3. The evaluation has been minimized below a certain 
tolerance. 

4. The gradient norm has fallen below a certain 
tolerance. 

LEARNING ALGORITHmS

Training algorithms may require information from 
the objective function only, the gradient vector of the 
objective function or the Hessian matrix of the objec-
tive function:

• Zero-order training algorithms make use of the 
objective function only.  The most significant 
algorithms are evolutionary algorithms, which are 
global optimization methods (Goldberg, 1989).

• First-order training algorithms use the objective 
function and its gradient vector. Examples are 
Gradient Descent, Conjugate Gradient or Quasi-
Newton methods, which are all local optimization 
methods (Luenberger, 1984).

• Second-order training algorithms make use of 
the objective function, its gradient vector and its 
Hessian matrix.  Examples are Newton’s method 
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and the Levenberg-Marquardt algorithm, which 
are local optimization methods (Luenberger, 
1984). 

First-order methods. The gradient ∇Ew of an s-
dimensional function is the vector field of first deriva-
tives of E(w) w.r.t.  w,

∇Ew= (
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∂
∂
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Here s=dim(w). A linear approximation to E(w) in 
an infinitesimal neighbourhood of an arbitrary point 
wi is given by: 

E(w) ≈ E(wi)+∇Ew(wi)⋅(w-wi)   (3)

We write ∇Ew(wi) for the gradient ∇Ew evalu-
ated at wi. These are the first two terms of the Taylor 
expansion of E(w) around wi. In steepest or gradient 
descent methods, this local gradient alone determines 
the minimization direction ui. Since, at any point wi, 
the gradient ∇Ew(wi) points in the direction of fastest 
increase of E(w), an adjustment of wi in the negative 
direction of the local gradient leads to its maximum 
decrease.  In consequence the direction ui= -∇Ew(wi) 
is taken.

In conventional steepest descent, the step size αi 
is obtained by a line search in the direction of ui: how 
far to go along ui before a new direction is chosen.  
To this end, evaluations of E(w) and its derivatives 
are made to locate some nearby local minimum. Line 
search is a move in the chosen direction ui to find the 
minimum of E(w) along it.  For this one-dimensional 
problem, the simplest approach is to proceed along ui 
in small steps, evaluating E(w) at each sampled point, 
until it starts to increase. One often used method is a 
divide-and-conquer strategy, also called Brent’s method 
(Fletcher, 1980):

 
1. Bracket the search by setting three points a<b<c 

along ui such that E(aui)>E(bui)<E(cui). Since 
E is continuous, there is a local minimum in the 
line joining a to c. 

2. Fit a parabola (a quadratic polynomial) to a,b,c. 
3. Compute the minimum µ of the parabola in the 

line joining a to c. This value is an approximation 
of the minimum of E in this interval. 

4. Set three new points a,b,c out of µ and the two 
points among the old a,b,c having the lowest E. 
Repeat from 2. 

Although it is possible to locate the nearby global 
minimum, the cost can become prohibitedly high. 
The line search can be replaced by a fixed step size α, 
which has to be carefully chosen. A sufficiently small 
α is required such that α∇Ew(ui) is effectively very 
small and the expansion (3) can be applied. A too large 
value might cause to overshoot or lead to divergent 
oscillations and a complete breakout of the algorithm. 
On the other hand, very small values translate in a pain-
fully slow minimization.  In practice, a trial-and-error 
process is carried out.

A popular heuristic is a historic average of previ-
ous changes to exploit tendencies and add inertia 
to the descent, accomplished by adding a so-called 
momentum term βi∆wi-1, where ∆wi-1 is the previous 
weight update (Rumelhart, Hinton & Williams, 1986). 
This term helps to avoid or smooth out oscillations in 
the motion towards a minimum.  In practice, it is set 
to a constant value β∈(0.5,1). Altogether, for steepest 
descent, the update equation (1) reads: 

wi+1=wi+αiu
i+β∆wi-1    (4)

where ui=-∇Ew(wi) and ∆wi-1=wi-wi-1. This method 
is very sensitive to the chosen values for αi and β, to 
the point that different values are required for different 
problems and even for different stages in the learning 
process (Toolenaere, 1990). The inefficiency of the 
steepest descent method stems from the fact that both 
ui and αi are somewhat poorly chosen.  Unless the first 
step is chosen leading straight to a minimum, the itera-
tive procedure is very likely to wander with many small 
steps in zig-zag.  Therefore, these methods are quite out 
of use nowadays. A method in which both parameters 
are properly chosen is the conjugate gradient.

Conjugate Gradient.  This minimization technique 
(explained at length in Shewchuck, 1994) is based on 
the idea that a new direction ui+1 should not spoil 
previous minimizations in the directions ui,ui-1,...,u1. 
This is the case if we simply choose ui=-gi, where 
gi=∇Ew(wi), as was found above for steepest descent. 
At most points on E(w), the gradient does not point 
directly towards the minimum. After a line minimiza-
tion, the new gradient gi+1 is orthogonal to the line 
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