
873

IIA Algorithm Acceleration Using GPUs
Antonio Seoane
University of A Coruña, Spain

Alberto Jaspe
University of A Coruña, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Graphics Processing Units (GPUs) have been evolving
very fast, turning into high performance programmable
processors. Though GPUs have been designed to com-
pute graphics algorithms, their power and flexibility
makes them a very attractive platform for general-
purpose computing. In the last years they have been
used to accelerate calculations in physics, computer
vision, artificial intelligence, database operations, etc.
(Owens, 2007).

In this paper an approach to general purpose com-
puting with GPUs is made, followed by a description
of artificial intelligence algorithms based on Artificial
Neural Networks (ANN) and Evolutionary Computa-
tion (EC) accelerated using GPU.

BACKGROUND

General-Purpose Computation using Graphics Process-
ing Units (GPGPU) consists in the use of the GPU as
an alternative platform for parallel computing taking
advantage of the powerful performance provided by
the graphics processor (General-Purpose Computation
Using Graphics Hardware Website; Owens, 2007).

There are several reasons that justify the use of
the GPU to do general-purpose computing (Luebke,
2006):

Last generation GPUs are very fast in comparison
with current processors. For instance, a NVIDIA
8800 GTX card has computing capability of ap-
proximately 330 GFLOPS, whereas an Intel Core2
Duo 3.0 GHz processor has only a capability of
about 48 GFLOPS.
GPUs are highly-programmable. In the last years
graphical chip programming capacities have
grown very much, replacing fixed-programming

•

•

engines with programmable ones, like pixel and
vertex engines. Moreover, this has derived in the
appearance of high-level languages that help its
programming.
GPUs evolution is faster than CPU’s one. The
increase in GPU’s performance is nowadays from
1.7x to 2.3x per year, whereas in CPUs is about
1.4x. The pressure exerted by videogame market
is one of the main reasons of this evolution, what
forces companies to evolve graphics hardware
continuously.
GPUs use high-precision data types. Although in the
very beginning graphics hardware was designed to
work with low-precision data types, at the present
time internal calculations are computed using 32
bits float point numbers.
Graphics cards have low cost in relation to the
capacities that they provide. Nowadays, GPUs are
affordable for any user.
GPUs are highly-parallel and they can have multiple
processors that allow making high-performance
parallel arithmetic calculations.

Nevertheless, there are some obstacles. First, not all
the algorithms fit for the GPU’s programming model,
because GPUs are designed to compute high-intensive
parallel algorithms (Harris, 2005). Second, there are
difficulties in using GPUs, due mainly to:

GPU’s programming model is different from
CPU’s one.
GPUs are designed to graphics algorithms, there-
fore, to graphics programming. The implementation
of general-purpose algorithms on GPU is quite
different to traditional implementations.
Some limitations or restrictions exist in program-
ming capacities. Most functions on GPU’s program-
ming languages are very specific and dedicated to
make calculations in graphics algorithms.

•

•

•

•

•

•

•

874

IA Algorithm Acceleration Using GPUs

GPU’s architectures are quite variable due to
their fast evolution and the incorporation of new
features.

Therefore it is not easy to port an algorithm devel-
oped for CPUs to run in a GPU.

Overview of the Graphics Pipeline

Nowadays GPUs make their computations following a
common structure called Graphics Pipeline. The Graph-
ics Pipeline (Akenine-Möller, 2002) is composed by a
set of stages that are executed sequentially inside the
GPU, allowing the computing of graphics algorithms.
Recent hardware is made up of four main elements.
First, the vertex processors, that receive vertex arrays
from CPU and make the necessary transformations
from their positions in space to the final position in the
screen. Second, the primitive assembly build graphics
primitives (for instance, triangles) using information
about connectivity between different vertex. Third, in
the rasterizer, those graphical primitives are discretized
and turned into fragments. A fragment represents a
potential pixel and contains the necessary information
(color, depth, etc.) to generate the final color of a pixel.
Finally, in the fragment processors, fragments become
pixels to which final color is written in a target buffer,
that can be the screen buffer or a texture.

In the present, GPUs have multiple vertex and frag-
ment processors that compute operations in parallel.
Both are programmable using little pieces of code
called vertex and fragment programs, respectively.
In the last years different high-level programming
languages have released like Cg/HLSL (Mark, 2003;
HLSL Shaders) or GLSL (OpenGL Shading Language
Information Site), that make easier the programming
of those processors.

The GPU Programming Model

There is a big difference between programming CPUs
and GPUs due mainly to their different programming
models. GPUs are based on the stream programming
model (Owens, 2005a; Luebke, 2006; Owens, 2007),
where all data are represented by a stream that can
be defined as a sorted set of data of the same type. A
kernel operates on full streams, and takes input data
from one or more streams to produce one or more
output streams. The main characteristic of a kernel is

• that it operates on the whole stream, instead individual
elements. The typical use of a kernel is the evaluation
of a function over each element from an input stream,
calling this a map operation. Other operations of a
kernel are expansions, reductions, filters, etc. (Buck,
2004; Horn, 2005; Owens, 2007). The kernel generated
outputs are always based on their input streams, what
means that inside the kernel, the calculations made on
an element never depends of the other ones. In stream
programming model, applications are built connecting
multiple kernels. An application can be represented as
a dependency graph where each graph node is a kernel
and each edge represents a data stream between kernels
(Owens, 2005b; Lefohn, 2005).

The behavior of graphic pipeline is similar to the
stream programming model. Data flows through each
stage, where the output feeds the next one. Stream
elements (vertex or fragment arrays) are processed
independently by kernels (vertex or fragment programs)
and their output can be received again by another
kernels.

The stream programming model allows an efficient
computation, because kernels operate on independent
elements from a set of input streams and can be pro-
cessed using hardware like GPU, that process vertex
or fragments streams in parallel. This allows making
parallel computing without the complexity of traditional
parallel programming models.

Computational Resources on GPU

In order to implement any kind of algorithm on GPU,
there are different computational resources (Harris,
2005; Owens, 2007). By one side, current GPUs have
two different parallel programmable processors: vertex
and fragment processors. Vertex processors compute
vertex streams (points with associated properties like
position, color, normal, etc.). A vertex processor applies
a vertex program to transform each input vertex to its
position on the screen. Fragment processors compute
fragment streams. They apply a fragment program to
each fragment to calculate the final color of the pixel. In
addition of using the attributes of each fragment, those
processors can access to other data streams like textures
when they are generating each pixel. Textures can be
seen as an interface to access to read-only memory.

Another available resource in GPU is the rasterizer.
It generates fragments using triangles built in from
vertex and connectivity information. The rasterizer

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/algorithm-acceleration-using-gpus/10346

Related Content

The Epistemology of ChatGPT
 (2023). Artificial Intelligence Applications Using ChatGPT in Education: Case Studies and Practices (pp. 79-

83).

www.irma-international.org/chapter/the-epistemology-of-chatgpt/329832

Social Network Analysis: A Survey
Darren Quinn, Liming Chenand Maurice Mulvenna (2012). International Journal of Ambient Computing and

Intelligence (pp. 46-58).

www.irma-international.org/article/social-network-analysis/68844

Cluster Analysis of Gene Expression Data
Alan Wee-Chung Liew, Ngai-Fong Lawand Hong Yan (2009). Encyclopedia of Artificial Intelligence (pp. 289-

296).

www.irma-international.org/chapter/cluster-analysis-gene-expression-data/10262

Using ZigBee in Ambient Intelligence Learning Scenarios
Óscar García, Ricardo S. Alonso, Dante I. Tapiaand Juan M. Corchado (2012). International Journal of

Ambient Computing and Intelligence (pp. 33-45).

www.irma-international.org/article/using-zigbee-ambient-intelligence-learning/68843

Motorola’s Experiences in Designing the Internet of Things
Andreas Schallerand Katrin Mueller (2011). Ubiquitous Developments in Ambient Computing and Intelligence:

Human-Centered Applications (pp. 84-92).

www.irma-international.org/chapter/motorola-experiences-designing-internet-things/53327

http://www.igi-global.com/chapter/algorithm-acceleration-using-gpus/10346
http://www.igi-global.com/chapter/algorithm-acceleration-using-gpus/10346
http://www.irma-international.org/chapter/the-epistemology-of-chatgpt/329832
http://www.irma-international.org/article/social-network-analysis/68844
http://www.irma-international.org/chapter/cluster-analysis-gene-expression-data/10262
http://www.irma-international.org/article/using-zigbee-ambient-intelligence-learning/68843
http://www.irma-international.org/chapter/motorola-experiences-designing-internet-things/53327

