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INTRODUCTION

Genetic algorithms (GAs) are stochastic search 
techniques based on the concepts of natural popula-
tion genetics for exploring a huge solution space in 
identifying optimal or near optimal solutions  (Davis, 
1991)(Holland, 1992)(Reeves & Rowe, 2003), and are 
more likely able to avoid the local optima problem than 
traditional gradient based hill-climbing optimization 
techniques when solving complex problems. 

In essence, GAs are a type of reinforcement learn-
ing technique (Grefenstette, 1993), which are able to 
improve solutions gradually on the basis of the previ-
ous solutions. GAs are characterized by their abilities 
to combine candidate solutions to exploit efficiently a 
promising area in the solution space while stochastically 
exploring new search regions with expected improved 
performance. Many successful applications of this tech-
nique are frequently reported across various kinds of 
industries and businesses, including function optimiza-
tion (Ballester & Carter, 2004)(Richter & Paxton, 2005), 
financial risk and portfolio management (Shin & Han, 
1999), market trading (Kean, 1995), machine vision and 
pattern recognition (Vafaie & De Jong, 1998), document 
retrieval (Gordon, 1988), network topological design 
(Pierre & Legault, 1998)(Arabas & Kozdrowski, 2001), 
job shop scheduling (Özdamar, 1999), and optimization 
for operating system’s dynamic memory configuration 
(Del Rosso, 2006), among others.

In this research we introduce the concept and com-
ponents of GAs, and then apply the GA technique to 
the modeling of the batch selection problem of flexible 
manufacturing systems (FMSs). The model developed 
in this paper serves as the basis for the experiment in 
Deng (2007).

GENETIC ALGORITHmS

GAs were simulation techniques proposed by John 
Holland in the 1960s (Holland, 1992). Basically, GAs 

solve problems by maintaining and modifying a popu-
lation of candidate solutions through the application 
of genetic operators. During this process, beneficial 
changes to parent solutions are combined into their 
offspring in developing optimal or near-optimal solu-
tions for the given task.

Intrinsically, GAs explore multiple potentially prom-
ising regions in the solution space at the same time, 
and switch stochastically from one region to another 
for performance improvement. According to Holland 
(1992), regions in the solution space can be defined 
by syntactic patterns of solutions, and each pattern is 
called a schema. A schema represents the pattern of 
common attributes or features of the solutions in the 
same region. Let Σ be an alphabet of symbols. A string 
over an alphabet is a finite sequence of symbols from 
the alphabet. An n-ary schema is defined as a string in 
(Σ ∪ {#})n, where # ∉ Σ is used as a wildcard denota-
tion for any symbol in Σ.

Conceptually, n-ary schemata can be regarded as 
defining hypersurfaces of an n-dimensional hypercube 
that represents the space of all n-attribute solutions. 
Individual solutions in the same region can be re-
garded as instances of the representing schema, and 
an individual solution can belong to multiple schemata 
at the same time. Actually, an n-attribute solution is a 
member of 2n different schemata. Therefore, evaluating 
a solution has the similar effect of sampling 2n regions 
(i.e., schemata) at the same time, and this is the famous 
implicit parallelism of genetic search. A population of 
M solutions will contain at least 2n and at most nM 2⋅
schemata. Even for modest values of n and M, there will 
be a large number of schemata available for processing 
in the population. GAs perform an implicit parallel 
search through the space of possible schemata in the 
form of performing an explicit parallel search through 
the space of individual solutions.

The problem solving process of GAs follows a 
five-phase operational cycle: generation, evaluation, 
selection, recombination (or crossover), and mutation. 
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At first a population of candidate solutions is generated. 
A fitness function or objective function is then defined, 
and each candidate solution in the population is evalu-
ated to determine its performance or fitness. Based on 
the relative fitness value, two candidate solutions are 
selected probabilistically as parents. Recombination 
is then applied probabilistically to the two parents to 
form two offspring, and each of the offspring solutions 
contains some characteristics from its parent solutions. 
After this, mutation is applied sparingly to components 
of each offspring solution. The newly generated off-
spring are then used to replace the low-fitness members 
in the population. This process is repeated until a new 
population is formed. Through the above iterative cycles 
of operations, GAs is able to develop better solutions 
through progressive generations.

In order to prepare for the investigation of the effects 
of genetic operations in the sequel of current research, 
we apply the GA technique to the optimization model-
ing of manufacturing systems in next section.

A GA-BASED BATCH SELECTION 
SySTEm

Batch selection is one of the most critical tasks in the 
development of a master production plan for flexible 
manufacturing systems (FMSs). In the manufacturing 
process, each product requires processing by differ-
ent sets of tools on different machines with different 
operations performed in a certain sequence. Each ma-
chine has its own limited space capacity in mounting 
tools and limited amount of available processing time. 
Under various kinds of resource constraints, choosing 
an optimal batch of products to be manufactured in a 
continuous operational process with the purpose to 
maximize machine utilization or profits has made the 
batch selection decision a very hard problem. While this 
problem is usually manageable for manufacturing small 
number of products, it quickly becomes intractable if 
the number of products grows even slightly large. The 
time required to solve the problem exhaustively would 
grow in a non-deterministic polynomial manner with 
the number of products to be manufactured.

Batch selection affects all the subsequent deci-
sions in job shop scheduling for satisfying the master 
production plan, and holds the key to the efficient 
utilization of resources in generating production plans 

for fulfilling production orders. In our formulation, 
we use the following denotational symbols:

• M: the cardinality of the the set of machines 
available

• T: the cardinality of the the set of tools avail-
able

• P: the cardinality of the set of products to be 
manufactured

• MachineUtilization: the function of total machine 
utilization

• processing_timeproduct,tool,machine: the time needed to 
manufacture product product using tool tool on 
machine machine

• available_timemachine: the total available processing 
time on machine machine

• capacitymachine: the total number of slots available 
on machine machine

• machine, tool, product: indicators for machines, 
tools, and products to be manufactured corre-
spondingly

• slottool: the number of slot required by machine 
tool tool

• quantityproduct: the quantity of product product to 
be manufactured in a shift

• Qproduct: the quantity of product product ordered by 
customers as specified in the production table

Fitness (or Objective) Function

The objective is to identify a batch of products to be 
manufactured so that the total machine utiliztion rate 
will be maximized. See Exhibit A.

The above objective function is to be maximized 
subject to the following resource constraints:

1. Machine capacity constraint (see Exhibit B)

The above function f() is used to determine if tool 
tool needs to be mounted on machine machine for the 
processing of the current batch of product.

2. Machine time constraint (see Exhibit C)
3. Non-negativity and integer contraints

Encoder/Decoder

The Encoder/Decoder is a representation scheme used 
to determine how the problem is structured in the GA 
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