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INTRODUCTION

Fuzzy control systems are developed based on fuzzy 
set theory, attributed to Lotfi A. Zadeh (Zadeh, 1965, 
1973), which extends the classical set theory with 
memberships of its elements described by the clas-
sical characteristic function (either “is” or “is not” a 
member of the set), to allow for partial membership 
described by a membership function (both “is” and 
“is not” a member of the set at the same time, with a 
certain degree of belonging to the set). Thus, fuzzy set 
theory has great capabilities and flexibilities in solving 
many real-world problems which classical set theory 
does not intend or fails to handle.

Fuzzy set theory was applied to control systems 
theory and engineering almost immediately after its 
birth. Advances in modern computer technology con-
tinuously backs up the fuzzy framework for coping 
with engineering systems of a broad spectrum, includ-
ing many control systems that are too complex or too 
imprecise to tackle by conventional control theories 
and techniques. 

BACKGROUND: FUZZy CONTROL 
SySTEmS

The main signature of fuzzy logic technology is its 
ability of suggesting an approximate solution to an 
imprecisely formulated problem. From this point of 
view, fuzzy logic is closer to human reasoning than the 
classical logic, where the latter attempts to precisely 
formulate and exactly solve a mathematical or technical 
problem if ever possible.

Motivations for Fuzzy Control Systems 
Theory

Conventional control systems theory, developed based 
on classical mathematics and the two-valued logic, is 
relatively mature and complete. This theory has its solid 
foundation built on classical mathematics, electrical 
engineering, and computer technology. It can provide 
rigorous analysis and often perfect solutions when a 
system is precisely defined mathematically. Within 
this framework, some relatively advanced control 
techniques such as adaptive, robust and nonlinear 
control theories have gained rapid development in the 
last three decades. 

However, conventional control theory is quite lim-
ited in modeling and controlling complex dynamical 
systems, particularly ill-formulated and partially-de-
scribed physical systems. Fuzzy logic control theory, 
on the contrary, has shown potential in these kinds of 
non-traditional applications. Fuzzy logic technology 
allows the designers to build controllers even when 
their understanding of the system is still in a vague, 
incomplete, and developing phase, and such situations 
are quite common in industrial control practice.

General Structure of Fuzzy Control 
Systems

Just like other mathematical tools, fuzzy logic, fuzzy 
set theory, fuzzy modeling, fuzzy control methods, etc., 
have been developed for solving practical problems. 
In control systems theory, if the fuzzy interpretation 
of a real-world problem is correct and if fuzzy theory 
is developed appropriately, then fuzzy controllers can 
be suitably designed and they work quite well to their 
advantages. The entire process is then returned to the 
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original real-world setting, to accomplish the desired 
system automation. This is the so-called “fuzzifica-
tion—fuzzy operation—defuzzification” routine in 
fuzzy control design. The key step—fuzzy opera-
tion—is executed by a logical rule base consisting of 
some IF-THEN rules established by using fuzzy logic 
and human knowledge (Chen & Pham, 1999, 2006; 
Drianker, Hellendoorn & Reinfrank, 1993; Passino & 
Yurkovich, 1998; Tanaka, 1996; Tanaka & wang, 1999; 
Wang, 1994; Ying, 2000).

Fuzzification

Fuzzy set theory allows partial membership of an ele-
ment with respect to a set: an element can partially 
belong to a set and meanwhile partially not belong to 
the same set. For example, an element, x, belonging to 
the set, X, IS specified by a (normalized) membership 
function, μX : X → [0,1]. There are two extreme cases: 
μX(x) = 0 means x ∉ X and μX(x) = 1 means x ∈ X in 
the classical sense. But μX(x) = 0.2 means x belongs 
to X only with grade 0.2, or equivalently, x does not 
belong to X with grade 0.8. Moreover, an element can 
have more than one membership value at the same time, 
such as μX(x) = 0.2 and μX(x) = 0.6, and they need not 
be summed up to one. The entire setting depends on 
how large the set X is (or the sets X and Y are) for the 
associate members, and what kind of shape a member-
ship function should have in order to make sense of the 
real problem at hand. A set, X, along with a membership 
function defined on it, μX(·), is called a fuzzy set and is 
denoted (X, μX). More examples of fuzzy sets can be 
seen below, as the discussion continues. This process 
of transforming a crisp value of an element (say x = 
0.3) to a fuzzy set (say x = 0.3 ∈ X = [0,1] with μX(x) 
= 0.2) is called fuzzification.

Given a set of real numbers, X = [–1,1], a point x 
∈ X assumes a real value, say x = 0.3. This is a crisp 
number without fuzziness. However, if a membership 
function μX(·) is introduced to associate with the set X, 
then (X, μX) becomes a fuzzy set, and the (same) point 
x = 0.3 has a membership grade quantified by μX(·) (for 
instance, μX(x) = 0.9). As a result, x has not one but two 
values associated with the point: x = 0.3 and μX(x) = 
0.9. In this sense, x is said to have been fuzzified. For 
convenience, instead of saying that “x is in the set X 
with a membership value μX(x),” in common practice 
it is usually said “x is ,” while one should keep in mind 
that there is always a well-defined membership function 

associated with the set X. If a member, x, belongs to 
two fuzzy sets, one says “x is X1 AND x is X2,” and so 
on. Here, the relation AND needs a logical operation 
to perform. As a result, this statement eventually yields 
only one membership value for the element x, denoted 
by μX1 × X2

(x). There are several logical operations to 
implement the logical AND; they are quite different but 
all valid within their individual logical system. A com-
monly used one is μX1 × X2

(x) = min {μX1
(x), μX2

(x)}.

Fuzzy Logic Rule Base

The majority of fuzzy logic control systems are knowl-
edge-based systems. This means that either their fuzzy 
models or their fuzzy logic controllers are described 
by fuzzy logic IF-THEN rules. These rules have to 
be established based on human expert’s knowledge 
about the system, the controller, and the performance 
specifications, etc., and they must be implemented by 
performing rigorous logical operations. 

For example, a car driver knows that if the car moves 
straight ahead then he does not need to do anything; if 
the car turns to the right then he needs to steer the car 
to the left; if the car turns to the right by too much then 
he needs to take a stronger action to steer the car to the 
left much more, and so on. Here, “much” and “more” 
etc. are fuzzy terms that cannot be described by classi-
cal mathematics but can be quantified by membership 
functions (see Fig. 2, where part (a) is an example of 
the description “to the left”). The collection of all such 
“if … then …”  principles constitutes a fuzzy logic rule 
base for the problem under investigation. To this end, 
it is helpful to briefly summarize the experience of the 
driver in the following simplified rule base: Let X = 
[–180°, 180°], x be the position of the car, μleft(·) be the 
membership function for the moving car turning “to 
the left,” μright(·) the membership function for the car 
turning “to the right,” and μ0(·) the membership function 
for the car “moving straight ahead.” Here, simplified 
statements are used, for instance, “x is Xleft” means “x 
belongs to X with a membership value μleft(x)” etc. Also, 
similar notation for the control action u of the driver 
is employed. Then, a simple typical rule base for this 
car-driving task is 

R(1):  IF x is Xleft  THEN u is Uright
R(2):  IF x is Xright  THEN u is Uleft
R(3):  IF x is X0  THEN u is U0
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