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The answer to the theoretical question: “Can a machine 
be built capable of doing what the brain does?” is yes, 
provided you specify in a finite and unambiguous way 
what the brain does.

Warren S. McCulloch 

INTRODUCTION

The class of adaptive systems known as Artificial Neural 
Networks (ANN) was motivated by the amazing parallel 
processing capabilities of biological brains (especially 
the human brain). The main driving force was to re-cre-
ate these abilities by constructing artificial models of 
the biological neuron. The power of biological neural 
structures stems from the enormous number of highly 
interconnected simple units. The simplicity comes 
from the fact that, once the complex electro-chemical 
processes are abstracted, the resulting computation 
turns out to be conceptually very simple.  

These artificial neurons have nowadays little in 
common with their biological counterpart in the ANN 
paradigm. Rather, they are primarily used as compu-
tational devices, clearly intended to problem solving: 
optimization, function approximation, classification, 
time-series prediction and others. In practice few ele-
ments are connected and their connectivity is low. This 
chapter is focused to supervised feed-forward networks. 
The field has become so vast that a complete and clear-
cut description of all the approaches is an enormous 
undertaking; we refer the reader to (Fiesler & Beale, 
1997) for a comprehensive exposition.

BACKGROUND

Artificial Neural Networks (Bishop, 1995), (Haykin, 
1994), (Hertz, Krogh & Palmer, 1991), (Hecht-Nielsen, 
1990) are information processing structures without 
global or shared memory, where each of the computing 
elements operates only when all its incoming infor-
mation is available, a kind of data-flow architectures.  

Each element is a simple processor with internal and 
adjustable parameters. The interest in ANN is primar-
ily related to the finding of satisfactory solutions for 
problems cast as function approximation tasks and 
for which there is scarce or null knowledge about the 
process itself, but a (limited) access to examples of 
response.  They have been widely and most fruitfully 
used in a variety of applications—see (Fiesler & Beale, 
1997) for a comprehensive review—especially after the 
boosting works of (Hopfield, 1982), (Rumelhart, Hinton 
& Williams, 1986) and (Fukushima, 1980).

The most general form for an ANN is a labelled 
directed graph, where each of the nodes (called units 
or neurons) has a certain computing ability and is 
connected to and from other nodes in the network 
via labelled edges.  The edge label is a real number 
expressing the strength with which the two involved 
units are connected.  These labels are called weights. 
The architecture of a network refers to the number of 
units, their arrangement and connectivity.

In its basic form, the computation of a unit i is 
expressed as a function Fi of its input (the transfer 
function), parameterized with its weight vector or lo-
cal information. The whole system is thus a collection 
of interconnected elements, and the transfer function 
performed by a single one (i.e., the neuron model) is 
the most important fixed characteristic of the system.

There are two basic types of neuron models in the 
literature used in practice.  Both express the overall 
computation of the unit as the composition of two 
functions, as is classically done since the earlier model 
proposal of McCulloch & Pitts (1943): 

Fi(x ) = {g(h(x,wi)), wi∈Rn}, x∈Rn (1)

where wi is the weight vector of neuron i, h:Rn×Rn→
R is called the net input or aggregation function, and 
g:R→R is called the activation function. All neuron 
parameters are included in its weight vector.  

The choice h(x,wi)=x⋅wi+θ, where θ∈R is an offset 
term that may be included in the weight vector, leads 
to one of the most widely used neuron models.  When 
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neurons of this type are arranged in a feed-forward 
architecture, the obtained neural network is called 
MultiLayer Perceptron (MLP) (Rumelhart, Hinton 
& Williams, 1986). Usually, a smooth non-linear and 
monotonic function is used as activation. Among them, 
the sigmoids are a preferred choice.  

The choice h(x,wi)= ||x-wi||/θ (or other distance 
measure), with θ>0∈R a smoothing term, plus an 
activation g with a monotonically decreasing response 
from the origin, leads to the wide family of localized 
Radial Basis Function networks (RBF) (Poggio & 
Girosi, 1989). Localized means that the units give a 
significant response only in a neighbourhood of their 
centre wi. A Gaussian g(z)=exp(-z2/2) is a preferred 
choice for the activation function.  

The previous choices can be extended to take into 
account extra correlations between input variables. The 
inner product (containing no cross-product terms) can be 
generalized to a real quadratic form (an homogeneous 
polynomial of second degree with real coefficients) or 
even further to higher degrees, leading to the so-called 
higher-order units (or Σ−Π units). A higher-order unit 
of degree k includes all possible cross-products of at 
most k input variables, each with its own weight.  Con-
versely, basic Euclidean distances can be generalized 
to completely weighted distance measures, where all 
the (quadratic) cross-products are included. These full 
expressions are not commonly used because of the high 
numbers of free parameters they involve. 

These two basic neuron models have traditionally 
been regarded as completely separated, both from a 
mathematical and a conceptual point of view.  To a 
certain degree, this is true: the local vs. global ap-
proximation approaches to a function that they carry 

out make them apparently quite opposite methods (see 
Fig. 1). Mathematically, under certain conditions, they 
can be shown to be related (Dorffner, 1995). These 
conditions (basically, that both input and weight vec-
tors are normalized to unit norm) are difficult to fulfil 
in practice.

A layer is defined as a collection of independent units 
(not connected with one another) sharing the same input, 
and of the same functional form (same Fi but different 
wi). Multilayer feed-forward networks take the form of 
directed acyclic graphs obtained by concatenation of 
a number of layers.  All the layers but the last (called 
the output layer) are labelled as hidden. This kind of 
networks (shown in Fig. 2) compute a parameterized 
function Fw(x) of their input vector x by evaluating 
the layers in order, giving as final outcome the output 
of the last layer. The vector w represents the collection 
of all the weights (free parameters) in the network.  
For simplicity, we are not considering connections 
between non-adjacent layers (skip-layer connections) 
and assume otherwise total connectivity.  The set of 
input variables is not counted as a layer.

Output neurons take the form of a scalar product (a 
linear combination), eventually followed by an activa-
tion function g. For example, assuming a single output 
neuron, a one-hidden-layer neural network with h hid-
den units computes a function F:Rn→R of the form: 

Fw(x)=g(∑
=

h

i 1
ciFi(x) - θ)  (2)

Figure 1. A classification problem.  Left: Separation by spherical RBF units (R-neurons). Right: Separation by 
straight lines (P-neurons) in the MLP.



 

 

6 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/feed-forward-artificial-neural-network/10314

Related Content

VaTIS: A Travel Information Service for the City of Valletta, Malta
Alexiei Dingliand Maria Attard (2016). International Journal of Conceptual Structures and Smart Applications

(pp. 1-15).

www.irma-international.org/article/vatis/176584

Engineering Adaptive Multi-Agent Systems: The ADELFE Methodology
Carole Bernon, Valérie Camps, Marie-Pierre Gleizesand Gauthier Picard (2008). Intelligent Information

Technologies: Concepts, Methodologies, Tools, and Applications  (pp. 513-535).

www.irma-international.org/chapter/engineering-adaptive-multi-agent-systems/24299

Diagnosing Autism Spectrum Disorder in Children: Appropriateness of Classifiers
Ebru Efeoluand Aye Tuna (2023). AI-Assisted Special Education for Students With Exceptional Needs (pp.

208-221).

www.irma-international.org/chapter/diagnosing-autism-spectrum-disorder-in-children/331740

Mobile Games: Emerging Content Business Area
Tommi Pelkonen (2008). Intelligent Information Technologies: Concepts, Methodologies, Tools, and

Applications  (pp. 2295-2306).

www.irma-international.org/chapter/mobile-games-emerging-content-business/24403

Arbitrary Generalized Trapezoidal Fully Fuzzy Sylvester Matrix Equation
Ahmed AbdelAziz Elsayed, Nazihah Ahmadand Ghassan Malkawi (2022). International Journal of Fuzzy

System Applications (pp. 1-22).

www.irma-international.org/article/arbitrary-generalized-trapezoidal-fully-fuzzy-sylvester-matrix-equation/303564

http://www.igi-global.com/chapter/feed-forward-artificial-neural-network/10314
http://www.igi-global.com/chapter/feed-forward-artificial-neural-network/10314
http://www.irma-international.org/article/vatis/176584
http://www.irma-international.org/chapter/engineering-adaptive-multi-agent-systems/24299
http://www.irma-international.org/chapter/diagnosing-autism-spectrum-disorder-in-children/331740
http://www.irma-international.org/chapter/mobile-games-emerging-content-business/24403
http://www.irma-international.org/article/arbitrary-generalized-trapezoidal-fully-fuzzy-sylvester-matrix-equation/303564

