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INTRODUCTION

Deformable models are well known examples of arti-
ficially intelligent system (AIS). They have played an 
important role in the challenging problem of extracting 
useful information about regions and areas of interest 
(ROIs) imaged through different modalities. The chal-
lenge is also in extracting boundary elements belonging 
to the same ROI and integrate them into a coherent and 
consistent model of the structure. Traditional low-level 
image processing techniques that consider only local 
information can make incorrect assumptions during 
this integration process and generate unfeasible object 
boundaries. To solve this problem, deformable models 
were introduced (Ivins, 1994), (McInerney, 1996), 
(Wang, 2000). These AI models are currently important 
tools in many scientific disciplines and engineering 
applications (Duncan, 2000). 

Deformable models offer a powerful approach to 
accommodate the significant variability of structures 
within a ROI over time and across different individu-
als. Therefore, they are able to segment, match and 
track images of structures by exploiting (bottom-up) 
constraints derived from the image data together with 
(top-down) a priori knowledge about the location, size, 
and shape of these structures. 

The mathematical foundations of deformable mod-
els represent the confluence of geometry, physics and 
approximation theory. Geometry serves to represent 
object shape, physics imposes constraints on how the 
shape may vary over space and time, and optimal ap-
proximation theory provides the formal mechanisms 

for fitting the models to data. The physical interpreta-
tion views deformable models as elastic bodies which 
respond to applied force and constraints. 

BACKGROUND

The deformable model that has attracted the most at-
tention to date is the active contour model (ACM), 
well-known as snakes, presented by Kass et al. (Kass, 
1987), (Cootes & Taylor, 1992). The mathematical 
basis present in snake models is similar to all deform-
able models, which are based on energy minimizing 
techniques. 

Recently, there has been an increasing interest in 
level set or geodesic segmentation methods, introduced 
in (Osher & Sethian, 1988), (Malladi, 1995) and (Ca-
selles, 1997). Level set approach involves solving the 
ACM minimization problem by the computation of 
minimal distances curve. This method allows topo-
logical changes within the ROIs and extension to 3D. 
Therefore, for some applications it is an improvement 
on classical ACM. 

Other approaches to deformable model are those 
based on dynamic models or physically based tech-
niques, for example superquadrics (Terzopoulos, 1991) 
and the finite element model (FEM) (Pentland, 1991). 
The FEM accurately describes changes in position, 
orientation and shape. The FEM can be used to solve 
fitting, interpolation or correspondence problems. In 
the FEM, interpolation functions are developed that 
allow continuous material properties, such as mass 
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and stiffness, to be integrated across the ROIs. This 
last property makes them different from the previous 
models and therefore more suitable for some artificial 
vision applications. 

The next sections contain a brief introduction to the 
mathematical foundations of deformable models. 

ENERGy MINIMIZING DEFORMABlE 
MODElS

Geometrically, an active contour model is a parametric 
contour embedded in the image plane (x, y) ∈ R2. The 
dynamic contour is represented as a time-varying curve, 
v(s,t) =(x(s,t), y(s,t)), where x and y are the coordinate 
functions and s ∈ [0, 1] is the parametric domain. The 
curve evolves until the ROI, subject to constraints 
from a given image I(x, y), reaches an equilibrium. 
Thus, initially a curve is set around the ROI that, via 
minimization of an energy functional, moves normal to 
itself and stops at the boundary of the ROI. The energy 
functional is defined as: 
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The first term, Einternal, represents the internal energy 
of the spline curve due to mechanical properties of 
the contour, stretching and bending. It is a sum of two 
components, the elasticity and rigidity energy: 
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where α controls the tension of the contour, while β 
controls its rigidity. Thus, this functions determinate 
how the snake can stretch or bend at any point s of the 
spline curve. The second terms couples the snake to 
the image:
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where P(v(s,t)) denotes a scalar potential function de-
fined on the image plane. It is responsible for attracting 
the contour towards the object in the image (external 

energy). Therefore, it can be expressed as a weighted 
combination of energy function. 

To apply snakes to images, external potentials are 
designed whose local minima coincides with intensity 
extrema, edges and other image features of interest. 
For example, the contour will be attracted to intensity 
edges in an image by choosing a potential 
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where c controls the magnitude of the potential, ∇ is 
the gradient operator and Gσ*I(x,y), denotes the image 
convolved with a Gaussian smoothing filter.

In accordance with the calculus of variations, the 
contour v(s,t) that minimizes the energy of (1) must 
satisfy the Euler-Lagrange equation. Moreover, the La-
grange equation of motion for a snake with the internal 
and external energy given by equation (1) is:
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with a mass density µ and a damping density γ. This 
leads to dynamic deformable models that unify the 
description of shape and motion, making it possible 
to quantify not just static shape, but also shape evolu-
tion through time. The first two terms of this partial 
differential equation represent inertial and damping 
forces. The remaining terms represent the internal 
stretching, the bending forces and the external forces. 
Equilibrium is achieved when the internal and exter-
nal forces balance and the contour comes to rest, i.e., 
inertial and damping forces are zero, which yields the 
equilibrium condition.

Traditional snake models are known to be limited 
in several aspects, such as their sensitivity to the initial 
contours. These are non-free parameters and do not 
handle changes in the topology of the shape. That is, 
when considering more than one object in the image, 
for instance for an initial prediction of v(s,t) surrounding 
all of them, it is not possible to detect all the objects. 
Special topology-handling procedures must be added. 
Some techniques have been proposed to solve these 
drawbacks. These techniques are based on information 



 

 

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/energy-minimizing-active-models-artificial/10301

Related Content

Projective Geometry for 3D Modeling of Objects
Rimon Elias (2012). 3-D Surface Geometry and Reconstruction: Developing Concepts and Applications  (pp.

28-48).

www.irma-international.org/chapter/projective-geometry-modeling-objects/64384

DNA Fragment Assembly Using Quantum-Inspired Genetic Algorithm
Manisha Rathee, Kumar Dilipand Ritu Rathee (2019). Exploring Critical Approaches of Evolutionary

Computation (pp. 80-98).

www.irma-international.org/chapter/dna-fragment-assembly-using-quantum-inspired-genetic-algorithm/208043

Optimizing the Performance of Plastic Injection Molding Using Weighted Additive Model in Goal

Programming
Abbas Al-Refaieand Ming-Hsien Li (2011). International Journal of Fuzzy System Applications (pp. 43-54).

www.irma-international.org/article/optimizing-performance-plastic-injection-molding/54241

Interval-Valued Doubt Fuzzy Ideals in BCK-Algebras
Tripti Bejand Madhumangal Pal (2019). International Journal of Fuzzy System Applications (pp. 101-121).

www.irma-international.org/article/interval-valued-doubt-fuzzy-ideals-in-bck-algebras/239879

Creating a Comprehensive Agent-Oriented Methodology: Using Method Engineering and the OPEN

Metamodel
Brian Henderson-Sellers (2008). Intelligent Information Technologies: Concepts, Methodologies, Tools, and

Applications  (pp. 469-490).

www.irma-international.org/chapter/creating-comprehensive-agent-oriented-methodology/24297

http://www.igi-global.com/chapter/energy-minimizing-active-models-artificial/10301
http://www.igi-global.com/chapter/energy-minimizing-active-models-artificial/10301
http://www.irma-international.org/chapter/projective-geometry-modeling-objects/64384
http://www.irma-international.org/chapter/dna-fragment-assembly-using-quantum-inspired-genetic-algorithm/208043
http://www.irma-international.org/article/optimizing-performance-plastic-injection-molding/54241
http://www.irma-international.org/article/interval-valued-doubt-fuzzy-ideals-in-bck-algebras/239879
http://www.irma-international.org/chapter/creating-comprehensive-agent-oriented-methodology/24297

