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INTRODUCTION

AI models are often categorized in terms of the con-
nectionist vs. symbolic distinction. In addition to being 
descriptively unhelpful, these terms are also typically 
conflated with a host of issues that may have nothing 
to do with the commitments entailed by a particular 
model. A more useful distinction among cognitive rep-
resentations asks whether they are local or distributed 
(van Gelder 1999). 

Traditional symbol systems (grammar, predicate 
calculus) use local representations: a given symbol has 
no internal content and is located at a particular address 
in memory. Although well understood and successful in 
a number of domains, traditional representations suffer 
from brittleness. The number of possible items to be 
represented is fixed at some arbitrary hard limit, and a 
single corrupt memory location or broken pointer can 
wreck an entire structure.  

In a distributed representation, on the other hand, 
each entity is represented by a pattern of activity 
distributed over many computing elements, and each 
computing element is involved in representing many 
different entities (Hinton 1984).  Such representa-
tions have a number of properties that make them 
attractive for knowledge representation (McClelland, 
Rumelhart, & Hinton 1986): they are robust to noise, 
degrade gracefully, and support graded comparison 
through distance metrics. These properties enable fast 
associative memory and efficient comparison of entire 
structures without unpacking the structures into their 
component parts.

This article provides an overview of distributed 
representations, setting the approach in its historical 
context.  The two essential operations necessary for 
building distributed representation of structures – bind-
ing and bundling – are described. We present example 
applications of each model, and conclude by discussing 
the current state of the art.

BACKGROUND

The invention of the backpropagation algorithm (Ru-
melhart, Hinton, & Williams 1986) led to a flurry of 
research in which neurally inspired models were ap-
plied to tasks for which the use of traditional AI data 
structures and algorithms were commonly assumed to 
be the only viable approach.  A compelling feature of 
these new models was that they could “discover” the 
representations best suited to the modelling domain, 
unlike the manmade representations used in traditional 
AI.   These discovered or learned representations were 
typically vectors of numbers in a fixed interval like [0, 
1], representing the values of the hidden variables.   A 
statistical technique like principal component analysis 
could be applied to such representations, revealing inter-
esting regularities in the training data (Elman 1990).

Issues concerning the nature of the representa-
tions learned by backpropagation led to criticisms of 
this work.  The most serious of these held that neural 
networks could not arrive at or exploit systematic, 
compositional representations of the sort used in tra-
ditional cognitive science and AI (Fodor & Pylyshyn 
1988).  A minimum requirement noted by critics was 
that a model that could represent e.g. the idea John loves 
Mary should also be able to represent Mary loves John 
(systematicity) and to represent John, Mary, and loves 
individually in the same way in both (compositionality).  
Critics claimed that neural networks are in principle 
unable to meet this requirement.

Systematicity and compositionality can be thought 
of as the outcome of two essential operations: binding 
and bundling.  Binding associates fillers (John, Mary) 
with roles (lover, beloved).   Bundling combines role/
filler bindings to produce larger structures.  Crucially, 
representations produced by binding and bundling 
must support an operation to recover the fillers of 
roles: it must be possible to ask “Who did what to 
whom?” questions and get the right answer.  Starting 
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around 1990, several researchers began to focus their 
attention on building models that could perform these 
operations reliably.  

VARIETIES OF DISTRIBUTED 
REPRESENTATION

This article describes the various approaches found in 
the recent neural network literature to implementing 
the binding and bundling operations.  Although several 
different models have been developed, they fall into 
one of two broad categories, based on the way that 
roles are represented and how binding and bundling 
are performed. 

Recursive Auto-Associative Memory

In Recursive Auto-Associative Memory, or RAAM 
(Pollack 1990), fillers are represented as relatively 
small vectors (N=10-50 elements) of zeros and ones.  
Roles are represented as N × N matrices of real values, 
and role/filler binding as the vector/matrix product.  
Bundling is performed by element-wise addition of 
the resulting vectors. There are typically two or three 
role matrices, representing general role categories like 
agent and patient, plus another N × N matrix must to 
represent the predicate (loves, sees, knows, etc.).  Be-
cause all vectors are the same size N, vectors containing 
bindings can be used as fillers, supporting structures of 
potentially unlimited complexity (Bill knows Fred said 
John loves Mary.)  The goal is to learn a set of matrix 
values (weights) to encode a set of such structures.  

In order to recover the fillers, a corresponding set 
of matrices must be trained to decode the vectors pro-
duced by the encoder matrices.  Together, the encoder 
and decoder matrices form an autoassociator network 
(Ackley, Hinton, & Sejnowski 1985) that can be trained 
with backpropagation.  The only additional constraint 
needed for backprop is that the vector/matrix products 
be passed through a limiting function, like the sigmoidal 
“squashing” function f(x) = 1 / (1 + e-x), whose output 
falls in the interval (0,1).  Figure 1 shows an example 
of autoassociative learning for a simple hypothetical 
structure, using three roles, with N = 4.  The same net-
work is shown at different stages of training (sub-tree 
and full tree) during a single backprop epoch. Note that 
the network devises its own compositional represen-
tations on its intermediate (“hidden”) layer, based on 
arbitrary binary vectors chosen by the experimenter.  
Unlike these binary vectors (black and white units), the 
intermediate representations can have values between 
zero and one (greyscale).

Once the RAAM network has learned a set of 
structures, the decoder sub-network should be able to 
recursively unpack each learned representation into its 
constituent elements.  As shown in Figure 2, decoding is 
a recursive process that terminates when the decoder’s 
output is similar enough to a binary string and continues 
otherwise.  In the original RAAM formulation, “similar 
enough” was determined by thresholds: if a unit’s value 
was above 0.8, it was considered to be on, and if it was 
below 0.2 it was considered to be off.  

RAAM answered the challenge of showing how neu-
ral networks could represent compositional structures 
in a systematic way.  The representations discovered by 
RAAM could be compared directly via distance metrics, 

Figure 1. Learning the structure (knows bill (loves john mary))) with RAAM 
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