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INTRODUCTION 

The need to deal with large data sets is at the heart of 
many real-world problems. In many organizations the 
data size has already surpassed Petabytes (1015). It is 
clear that to process such an enormous amount of data, 
the physical limitations of RAM is a major hurdle. How-
ever, the media that can hold huge data sets, i.e., hard 
disks, are about a 10,000 to 1,000,000 times slower to 
access than RAM. On the other hand, the costs for large 
amounts of disk space have considerably decreased. 
This growing disparity has led to a rising attention to 
the design of external memory algorithms (Sanders et 
al., 2003) in recent years. 

In a hard disk, random disk accesses are slow due 
to disk latency in moving the head on top of the data. 
But once the head is at its proper position, data can be 
read very rapidly. External memory algorithms exploit 
this fact by processing the data in the form of blocks. 
They are more informed about the future accesses to the 
data and can organize their execution to have minimum 
number of block accesses. 

Traditional graph search algorithms perform well 
as long as the graph can fit into the RAM. But for large 
graphs these algorithms are destined to fail. In the fol-
lowing, we will review some of the advances in the field 
of search algorithms designed for large graphs. 

BACKGROUND

Most modern operating systems provide a general-
purpose memory management scheme called Vir-
tual Memory to compensate for the limited RAM. 
Unfortunately, such schemes pay off only when the 
algorithm’s memory accesses are local, i.e., it works on 
a particular memory address range for a while, before 
switching the attention to another range. Search algo-
rithms, especially those that order the nodes on some 

particular node property, do not show such behaviour. 
They jump back and forth to pick the best node, in a 
spatially unrelated way for only marginal differences 
in the node property. 

External memory algorithms are designed with a 
hierarchy of memories in mind. They are analyzed on an 
external memory model as opposed to the traditional von 
Neumann RAM model. We use the two-level memory 
model by Vitter and Shriver (1994) to describe the search 
algorithms. The model provides the necessary tools to 
analyze the asymptotic number of block accesses (I/O 
operations) as the input size grows. It consists of 

• M: Size of the internal memory in terms of the 
number of elements,

• N >>M: Size of the input in terms of the number 
of elements, and

• B: Size of the data block that can be transferred 
between the internal memory and the hard disk; 
transferring one such block is called as a single 
I/O operation.

The complexity of external memory algorithms 
is conveniently expressed in terms of predefined I/O 
operations, such as, scan(N) for scanning a file of size 
N with a complexity of Θ(N/B) I/Os, and sort(N) for 
external sorting a file of size N with a complexity of 
Θ(N/B logM/B (N/B)) I/Os. With additional parameters 
the model can accommodate multiple disks and multiple 
processors too.

In the following, we assume a graph as a tuple (V, E, 
c), where V is the set of nodes, E the set of edges, and 
c the weight function that assigns a non-zero positive 
integer to each edge. If all edges have the same weight, 
the component c can be dropped and the graphs are 
called as unweighted.  Given a start node s and a goal 
node g, we require the search algorithm to return an 
optimal path wrt. the weight function.  
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EXTERNAl MEMORy SEARCH 
AlGORITHMS

External Memory Breadth-First Search

Breadth-first search (BFS) is one of the basic search 
algorithms. It explores a graph by first expanding the 
nodes that are closest to the start node. BFS for ex-
ternal memory has been proposed by Munagala and 
Ranade (1999). It only considers undirected and explicit 
(provided beforehand in the form of adjacency lists) 
graphs. The working of the algorithm is illustrated on a 
graph in Fig. 1. Let Open(i) be the set of nodes at BFS 
level i residing on disk. The algorithm builds Open(i) 
from Open(i-1) as follows. Let Succ(Open(i-1)) be the 
multi-set of successors of nodes in Open(i-1); this set 
is created by concatenating all adjacency lists of nodes 
in  Open(i-1).  As there can be multiple copies of the 
same node in this set the next step is to remove these 
duplicate nodes. In an internal memory setting this 
can be done easily using a hash table. Unfortunately, 
in an external setting a hash-table is not affordable due 
to random accesses to its contents. Therefore, we rely 
on alternative methods of duplicates’ removal that are 
well-suited for large data on disk. The first step is to 
sort the successor set using external sorting algorithms 
resulting in duplicate nodes lying adjacent to each 

other. By an external scanning of this sorted set, all 
duplicates are removed. Still, there can be nodes in 
this set that have already been expanded in the pre-
vious layers. Munagala and Ranade proved that for 
undirected graphs, it is sufficient to subtract only two 
layers, Open(i–1) and Open(i–2), from Open(i). Since 
all three lists are sorted, this can be done by a parallel 
external scanning. The accumulated I/O complexity of 
this algorithm is O(|V| + sort(|E|)) I/Os, where |V| is 
for the unstructured access to the adjacency lists, and 
sort(|E|) for duplicates removal. 

An implicit graph variant of the above algo-
rithm has been proposed by Korf (2003). It applies 
O(sort(|Succ(Open(i–1))|) +scan(|Open(i–1)| + 
|Open(i–2)|))) I/Os in each iteration. Since no explicit 
access to the adjacency list is needed (as the state space 
is generated on-the-fly), by using Σi |Succ(Open(i))| = 
O(|E|) and Σi |Open(i)| = O(|V|), the total execution time 
is bounded by O(sort(|E|)+ scan(|V|)) I/Os.

To reconstruct a solution path, we may store pred-
ecessor information with each node on disk (thus 
doubling the state vector size). Starting from the goal 
node, we recursively search for its predecessor in the 
previous layer through external scanning. The process 
continues until the first layer containing the start node 
is reached. Since the Breadth-first search preserves 
the shortest paths in a uniformly weighted graph, the 

Figure 1. An example graph (left); Stages of External Breadth-First Search (right). Each horizontal bar cor-
responds to a file. The grey-shaded A(2) and A’(2) are temporary files.
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