
404

Constraint Processing
Roman Barták
Charles University in Prague, Czech Republic

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Constraints appear in many areas of human endeavour
starting from puzzles like crosswords (the words can
only overlap at the same letter) and recently popular
Sudoku (no number appears twice in a row) through
everyday problems such as planning a meeting (the
meeting room must accommodate all participants) till
solving hard optimization problems for example in
manufacturing scheduling (a job must finish before
another job). Though all these problems look like being
from completely different worlds, they all share a similar
base – the task is to find values of decision variables,
such as the start time of the job or the position of the
number at a board, respecting given constraints. This
problem is called a Constraint Satisfaction Problem
(CSP).

Constraint processing emerged from AI research
in 1970s (Montanary, 1974) when problems such as
scene labelling were studied (Waltz, 1975). The goal
of scene labelling was to recognize a type of line (and
then a type of object) in the 2D picture of a 3D scene.
The possible types were convex, concave, and occlud-
ing lines and the combination of types was restricted
at junctions of lines to be physically feasible. This
scene labelling problem is probably the first problem
formalised as a CSP and some techniques developed
for solving this problem, namely arc consistency, are
still in the core of constraint processing. Systematic
use of constraints in programming systems has started
in 1980s when researchers identified a similarity be-
tween unification in logic programming and constraint
satisfaction (Gallaire, 1985) (Jaffar & Lassez, 1987).
Constraint Logic Programming was born. Today Con-
straint Programming is a separate subject independent
of the underlying programming language, though
constraint logic programming still plays a prominent
role thanks to natural integration of constraints into a
logic programming framework.

This article presents mainstream techniques for
solving constraint satisfaction problems. These tech-

niques stay behind the existing constraint solvers and
their understanding is important to exploit fully the
available technology.

BACKGROUND

Constraint Satisfaction Problem is formally defined as
a triple: a finite set of decision variables, a domain of
possible values, and a finite set of constraints restrict-
ing possible combinations of values to be assigned
to variables. Although the domain can be infinite, for
example real numbers, frequently, a finite domain is
assumed. Without lost of generality, the finite domain
can be mapped to a set of integers which is the usual
case in constraint solvers. This article covers finite
domains only. In many problems, each variable has
its own domain which is a subset of the domain from
the problem definition. Such domain can be formally
defined by a unary constraint. We already mentioned
that constraints restrict possible combinations of
values that the decision variables can take. Typically,
the constraint is defined over a subset of variables, its
scope, and it is specified either extensionally, as a set of
value tuples satisfying the constraint, or intentionally,
using a logical or arithmetical formula. This formula,
for example A < B, then describes which value tuples
satisfy the constraint. A small example of a CSP is ({A,
B, C}, {1, 2, 3}, {A < B, B < C}).

The task of constraint processing is to instantiate
each decision variable by a value from the domain in
such a way that all constraints are satisfied. This in-
stantiation is called a feasible assignment. Clearly, the
problem whether there exists a feasible assignment for
a CSP is NP-complete – problems like 3SAT or knap-
sack problem (Garey & Johnson, 1979) can be directly
encoded as CSPs. Sometimes, the core constraint satis-
faction problem is accompanied by a so called objective
function defined over (some) decision variables and we
get a Constrained Optimisation Problem. Then the task
is to select among the feasible assignments the assign-

 405

Constraint Processing

C
ment that minimizes (or maximizes) the value of the
objective function. This article focuses on techniques
for finding a feasible assignment but these techniques
can be naturally extended to optimization problems
via a well-known branch-and-bound technique (Van
Hentenryck, 1989).

There are several comprehensive sources of informa-
tion about constraint satisfaction starting from journal
surveys (Kumar, 1992) (Jaffar & Maher, 1996) through
on-line tutorials (Barták, 1998) till several books. Van
Hentenryck’s book (1989) was a pioneering work
showing constraint satisfaction in the context of logic
programming. Later Tsang’s book (1993) focuses on
constraint satisfaction techniques independently of the
programming framework and it provides full technical
details of most algorithms described later in this article.
Recent books cover both theoretical (Apt, 2003) and
practical aspects (Marriott & Stuckey, 1998), provide
good teaching material (Dechter, 2003) or in-depth
surveys of individual topics (Rossi et al., 2006). We
should not forget about books showing how constraint
satisfaction technology is applied in particular areas;
scheduling problems play a prominent role here
(Baptiste et al., 2001) because constraint processing
is exceptionally successful in this area.

CONSTRAINT SATISFACTION
TECHNIQUES

Constraint satisfaction problems over finite domains
are basically combinatorial problems so they can be
solved by exploring the space of possible (partial or
complete) instantiations of decision variables. Later in
this section we will present the typical search algorithms
used in constraint processing. However, it should be
highlighted that constraint processing is not simple
enumeration and we will also show how so called
consistency techniques contribute to solving CSPs.

Systematic Search

Search is a core technology of artificial intelligence and
many search algorithms have been developed to solve
various problems. In case of constraint processing we
are searching for a feasible assignment of values to vari-
ables where the feasibility is defined by the constraints.
This can be done in a backtracking manner where we
assign a value to a selected variable and check whether

the constraints whose scope is already instantiated are
satisfied. In the positive case, we proceed to the next
variable. In the negative case, we try another value
for the current variable or if there are no more values
we backtrack to the last instantiated variable and try
alternative values there. The following code shows the
skeleton of this procedure called historically labelling
(Waltz, 1975). Notice that the consistency check may
prune domains of individual variables, which will be
discussed in the next section.

procedure labelling(V,D,C)
 if all variables from V are assigned then return V
 select not-yet assigned variable x from V
 for each value v from Dx do
	 	 (TestOK,D’)	←	consistent(V,D,C∪{x=v})
 if TestOK=true then

R	←	labelling(V,D’,C)
 if	R	≠	fail	then return R
 end for
 return fail
end labelling

The above backtracking mechanism is parameter-
ized by variable and value selection heuristics that
decide about the order of variables for instantiation
and about the order in which the values are tried.
While value ordering is usually problem dependent
and problem-independent heuristics are not frequently
used due to their computational complexity, there are
popular problem-independent variable ordering heuris-
tics. Variable ordering is based on a so called first-fail
principle formulated by Haralick and Eliot (1980)
which says that the variable whose instantiation will
lead to a failure with the highest probability should
be tried first. A typical instance of this principle is a
dom heuristic which prefers variables with the small-
est domain for instantiation. There exist other popular
variable ordering heuristics (Rossi et al., 2006) such
as dom+deg or dom/deg, but their detail description is
out scope of this short article.

Though the heuristics influence (positively) effi-
ciency of search they cannot resolve all drawbacks of
backtracking. Probably the main drawback is ignoring
the information about the reason of constraint infeasi-
bility. If the algorithm discovers that no value can be
assigned to a variable, it blindly backtracks to the last
instantiated variable though the reason of the conflict
may be elsewhere. There exist techniques like back-
jumping that can detect the variable whose instantiation
caused the problem and backtrack (backjump) to this

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/constraint-processing/10279

Related Content

Securely Communicating with an Optimal Cloud for Intelligently Enhancing a Cloud's Elasticity
S. Kirthicaand Rajeswari Sridhar (2018). International Journal of Intelligent Information Technologies (pp. 43-

58).

www.irma-international.org/article/securely-communicating-with-an-optimal-cloud-for-intelligently-enhancing-a-clouds-

elasticity/205669

Improving the Computational Process for Identifying Optimal Design Using Fuzzified Decision

Models
Olayinka Mohammed Olabanji (2022). International Journal of Fuzzy System Applications (pp. 1-22).

www.irma-international.org/article/improving-the-computational-process-for-identifying-optimal-design-using-fuzzified-

decision-models/303562

Dual Hesitant Fuzzy Soft Rings
V. Deepa (2018). International Journal of Fuzzy System Applications (pp. 1-16).

www.irma-international.org/article/dual-hesitant-fuzzy-soft-rings/208625

Combined Electromagnetism-Like Algorithm with Tabu Search to Scheduling
J. Behnamian (2015). Handbook of Research on Artificial Intelligence Techniques and Algorithms (pp. 478-

508).

www.irma-international.org/chapter/combined-electromagnetism-like-algorithm-with-tabu-search-to-scheduling/123089

Generating a Mental Health Curve for Monitoring Depression in Real Time by Incorporating

Multimodal Feature Analysis Through Social Media Interactions
Moumita Chatterjee, Piyush Kumarand Dhrubasish Sarkar (2023). International Journal of Intelligent

Information Technologies (pp. 1-25).

www.irma-international.org/article/generating-a-mental-health-curve-for-monitoring-depression-in-real-time-by-incorporating-

multimodal-feature-analysis-through-social-media-interactions/324600

http://www.igi-global.com/chapter/constraint-processing/10279
http://www.igi-global.com/chapter/constraint-processing/10279
http://www.irma-international.org/article/securely-communicating-with-an-optimal-cloud-for-intelligently-enhancing-a-clouds-elasticity/205669
http://www.irma-international.org/article/securely-communicating-with-an-optimal-cloud-for-intelligently-enhancing-a-clouds-elasticity/205669
http://www.irma-international.org/article/improving-the-computational-process-for-identifying-optimal-design-using-fuzzified-decision-models/303562
http://www.irma-international.org/article/improving-the-computational-process-for-identifying-optimal-design-using-fuzzified-decision-models/303562
http://www.irma-international.org/article/dual-hesitant-fuzzy-soft-rings/208625
http://www.irma-international.org/chapter/combined-electromagnetism-like-algorithm-with-tabu-search-to-scheduling/123089
http://www.irma-international.org/article/generating-a-mental-health-curve-for-monitoring-depression-in-real-time-by-incorporating-multimodal-feature-analysis-through-social-media-interactions/324600
http://www.irma-international.org/article/generating-a-mental-health-curve-for-monitoring-depression-in-real-time-by-incorporating-multimodal-feature-analysis-through-social-media-interactions/324600

