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INTRODUCTION

Constraints appear in many areas of human endeavour 
starting from puzzles like crosswords (the words can 
only overlap at the same letter) and recently popular 
Sudoku (no number appears twice in a row) through 
everyday problems such as planning a meeting (the 
meeting room must accommodate all participants) till 
solving hard optimization problems for example in 
manufacturing scheduling (a job must finish before 
another job). Though all these problems look like being 
from completely different worlds, they all share a similar 
base – the task is to find values of decision variables, 
such as the start time of the job or the position of the 
number at a board, respecting given constraints. This 
problem is called a Constraint Satisfaction Problem 
(CSP).

Constraint processing emerged from AI research 
in 1970s (Montanary, 1974) when problems such as 
scene labelling were studied (Waltz, 1975). The goal 
of scene labelling was to recognize a type of line (and 
then a type of object) in the 2D picture of a 3D scene. 
The possible types were convex, concave, and occlud-
ing lines and the combination of types was restricted 
at junctions of lines to be physically feasible. This 
scene labelling problem is probably the first problem 
formalised as a CSP and some techniques developed 
for solving this problem, namely arc consistency, are 
still in the core of constraint processing. Systematic 
use of constraints in programming systems has started 
in 1980s when researchers identified a similarity be-
tween unification in logic programming and constraint 
satisfaction (Gallaire, 1985) (Jaffar & Lassez, 1987). 
Constraint Logic Programming was born. Today Con-
straint Programming is a separate subject independent 
of the underlying programming language, though 
constraint logic programming still plays a prominent 
role thanks to natural integration of constraints into a 
logic programming framework.

This article presents mainstream techniques for 
solving constraint satisfaction problems. These tech-

niques stay behind the existing constraint solvers and 
their understanding is important to exploit fully the 
available technology.

BACKGROUND

Constraint Satisfaction Problem is formally defined as 
a triple: a finite set of decision variables, a domain of 
possible values, and a finite set of constraints restrict-
ing possible combinations of values to be assigned 
to variables. Although the domain can be infinite, for 
example real numbers, frequently, a finite domain is 
assumed. Without lost of generality, the finite domain 
can be mapped to a set of integers which is the usual 
case in constraint solvers. This article covers finite 
domains only. In many problems, each variable has 
its own domain which is a subset of the domain from 
the problem definition. Such domain can be formally 
defined by a unary constraint. We already mentioned 
that constraints restrict possible combinations of 
values that the decision variables can take. Typically, 
the constraint is defined over a subset of variables, its 
scope, and it is specified either extensionally, as a set of 
value tuples satisfying the constraint, or intentionally, 
using a logical or arithmetical formula. This formula, 
for example A < B, then describes which value tuples 
satisfy the constraint. A small example of a CSP is ({A, 
B, C}, {1, 2, 3}, {A < B, B < C}).

The task of constraint processing is to instantiate 
each decision variable by a value from the domain in 
such a way that all constraints are satisfied. This in-
stantiation is called a feasible assignment. Clearly, the 
problem whether there exists a feasible assignment for 
a CSP is NP-complete – problems like 3SAT or knap-
sack problem (Garey & Johnson, 1979) can be directly 
encoded as CSPs. Sometimes, the core constraint satis-
faction problem is accompanied by a so called objective 
function defined over (some) decision variables and we 
get a Constrained Optimisation Problem. Then the task 
is to select among the feasible assignments the assign-
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ment that minimizes (or maximizes) the value of the 
objective function. This article focuses on techniques 
for finding a feasible assignment but these techniques 
can be naturally extended to optimization problems 
via a well-known branch-and-bound technique (Van 
Hentenryck, 1989).

There are several comprehensive sources of informa-
tion about constraint satisfaction starting from journal 
surveys (Kumar, 1992) (Jaffar & Maher, 1996) through 
on-line tutorials (Barták, 1998) till several books. Van 
Hentenryck’s book (1989) was a pioneering work 
showing constraint satisfaction in the context of logic 
programming. Later Tsang’s book (1993) focuses on 
constraint satisfaction techniques independently of the 
programming framework and it provides full technical 
details of most algorithms described later in this article. 
Recent books cover both theoretical (Apt, 2003) and 
practical aspects (Marriott & Stuckey, 1998), provide 
good teaching material (Dechter, 2003) or in-depth 
surveys of individual topics (Rossi et al., 2006). We 
should not forget about books showing how constraint 
satisfaction technology is applied in particular areas; 
scheduling problems play a prominent role here 
(Baptiste et al., 2001) because constraint processing 
is exceptionally successful in this area.

CONSTRAINT SATISFACTION 
TECHNIQUES

Constraint satisfaction problems over finite domains 
are basically combinatorial problems so they can be 
solved by exploring the space of possible (partial or 
complete) instantiations of decision variables. Later in 
this section we will present the typical search algorithms 
used in constraint processing. However, it should be 
highlighted that constraint processing is not simple 
enumeration and we will also show how so called 
consistency techniques contribute to solving CSPs.

Systematic Search

Search is a core technology of artificial intelligence and 
many search algorithms have been developed to solve 
various problems. In case of constraint processing we 
are searching for a feasible assignment of values to vari-
ables where the feasibility is defined by the constraints. 
This can be done in a backtracking manner where we 
assign a value to a selected variable and check whether 

the constraints whose scope is already instantiated are 
satisfied. In the positive case, we proceed to the next 
variable. In the negative case, we try another value 
for the current variable or if there are no more values 
we backtrack to the last instantiated variable and try 
alternative values there. The following code shows the 
skeleton of this procedure called historically labelling 
(Waltz, 1975). Notice that the consistency check may 
prune domains of individual variables, which will be 
discussed in the next section.

procedure labelling(V,D,C)
 if all variables from V are assigned then return V
 select not-yet assigned variable x from V
 for each value v from Dx do
	 	 (TestOK,D’)	←	consistent(V,D,C∪{x=v})
  if TestOK=true then

R	←	labelling(V,D’,C)
   if	R	≠	fail	then return R
 end for
 return fail
end labelling

The above backtracking mechanism is parameter-
ized by variable and value selection heuristics that 
decide about the order of variables for instantiation 
and about the order in which the values are tried. 
While value ordering is usually problem dependent 
and problem-independent heuristics are not frequently 
used due to their computational complexity, there are 
popular problem-independent variable ordering heuris-
tics. Variable ordering is based on a so called first-fail 
principle formulated by Haralick and Eliot (1980) 
which says that the variable whose instantiation will 
lead to a failure with the highest probability should 
be tried first. A typical instance of this principle is a 
dom heuristic which prefers variables with the small-
est domain for instantiation. There exist other popular 
variable ordering heuristics (Rossi et al., 2006) such 
as dom+deg or dom/deg, but their detail description is 
out scope of this short article.

Though the heuristics influence (positively) effi-
ciency of search they cannot resolve all drawbacks of 
backtracking. Probably the main drawback is ignoring 
the information about the reason of constraint infeasi-
bility. If the algorithm discovers that no value can be 
assigned to a variable, it blindly backtracks to the last 
instantiated variable though the reason of the conflict 
may be elsewhere. There exist techniques like back-
jumping that can detect the variable whose instantiation 
caused the problem and backtrack (backjump) to this 
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