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INTRODUCTION

Biomedical imaging represents a practical and concep-
tual revolution in the applied sciences of the last thirty 
years. Two basic ingredients permitted such a break-
through: the technological development of hardware 
for the collection of detailed information on the organ 
under investigation in a less and less invasive fashion; 
the formulation and application of sophisticated math-
ematical tools for signal processing within a method-
ological setting of truly interdisciplinary flavor. 

A typical acquisition procedure in biomedical imag-
ing requires the probing of the biological tissue by means 
of some emitted, reflected or transmitted radiation. Then 
a mathematical model describing the image formation 
process is introduced and computational methods for 
the numerical solution of the model equations are 
formulated. Finally, methods based on or inspired by 
Artificial Intelligence (AI) frameworks like machine 
learning are applied to the reconstructed images in order 
to extract clinically helpful information. 

Important issues in this research activity are the 
intrinsic numerical instability of the reconstruction 
problem, the convergence properties and the computa-
tional complexity of the image processing algorithms. 
Such issues will be discussed in the following with the 
help of several  examples of notable significance in the 
biomedical practice. 

BACKGROUND

The first breakthrough in the theory and practice of 
recent biomedical imaging is represented by X-ray 
Computerized Tomography (CT) (Hounsfield, 1973). 
On October 11 1979 Allan Cormack and Godfrey 
Hounsfield gained the Nobel Prize in medicine for 
the development of computer assisted tomography. 
In the press release motivating the award, the Nobel 
Assembly of the Karolinska Institut wrote that in 

this revolutionary diagnostic tool “the signals[...]are 
stored and mathematically analyzed in a computer. The 
computer is programmed to reconstruct an image of 
the examined cross-section by solving a large number 
of equations including a corresponding number of 
unknowns”. Starting from this crucial milestone, bio-
medical imaging has represented a lively melting pot 
of clinical practice, experimental physics, computer 
science and applied mathematics, providing mankind 
of numerous non-invasive and effective instruments for 
early detection of diseases, and scientist of a prolific 
and exciting area for research activity.

The main imaging modalities in biomedicine can 
be grouped into two families according to the kind of 
information content they provide.

• Structural imaging: the image provides infor-
mation on the anatomical features of the tissue 
without investigating the organic metabolism. 
Structural modalities are typically characterized 
by a notable spatial resolution but are ineffective 
in reconstructing the dynamical evolution of the 
imaging parameters. Further to X-ray CT, other 
examples of such approach are Fluorescence 
Microscopy (Rost & Oldfield, 2000), Ultrasound  
Tomography (Greenleaf, Gisvold & Bahn, 1982), 
structural Magnetic Resonance Imaging (MRI) 
(Haacke, Brown, Venkatesan & Thompson, 1999) 
and some kinds of prototypal non-linear tomog-
raphies like Microwave Tomography (Boulyshev, 
Souvorov, Semenov, Posukh & Sizov,  2004), 
Diffraction Tomography (Guo & Devaney, 2005), 
Electrical  Impedance Tomography (Cheney, Isaa-
cson & Newell, 1999) and Optical Tomography      
(Arridge, 1999).

• Functional imaging: during the acquisition many 
different sets of signals are recorded according 
to a precisely established temporal paradigm. 
The resulting images can provide information 
on metabolic deficiencies and functional diseases 
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but are typically characterized by a spatial  reso-
lution which is lower (sometimes much lower) 
than the one of anatomical imaging. Emission 
tomographies like Single Photon Emission Com-
puterized Tomography (SPECT) (Duncan, 1997) 
or Positron Emission Tomography (PET) (Valk, 
Bailey, Townsend & Maisey, 2004) and Magnetic 
Resonance Imaging in its functional setup (fMRI) 
(Huettel, Song & McCarthy, 2004) are examples of 
these dynamical techniques together with Electro- 
and Magnetoencephalography (EEG and MEG) 
(Zschocke & Speckmann, 1993; Hamalainen, 
Hari, Ilmoniemi, Knuutila & Lounasmaa, 1993), 
which reproduce the neural activity at a millisec-
ond time scale and in a completely non-invasive 
fashion.

In all these imaging modalities the correct math-
ematical modeling of the imaging problem, the for-
mulation of computational algorithms for the solution 
of the model equations and the application of image 
processing algorithms for data interpretation are the 
crucial steps which allow the exploitness of the visual 
information from the measured raw data.

MAIN FOCUS

From a mathematical viewpoint the inverse problem 
of synthesizing the biological information in a visual 
form from the collected radiation is characterized by 
a peculiar pathology. 

The concept of ill-posedness has been introduced 
by Jules Hadamard (Hadamard, 1923) to indicate math-
ematical problems whose solution does not exist for 
all data, or is not unique or does not depend uniquely 
on the data. In biomedical imaging this last feature has 
particularly deleterious consequences: indeed, the pres-
ence of measurement noise in the raw data may produce 
notable numerical instabilities in the reconstruction 
when naive approaches are applied. 

Most (if not all) biomedical imaging problems are 
ill-posed inverse problems (Bertero & Boccacci, 1998) 
whose solution is a difficult mathematical task and often 
requires a notable computational effort. The first step 
toward the solution is represented by an accurate model-
ing of the mathematical relation between the biological 
organ to be imaged and the data provided by the imaging 

device. Under the most general assumptions the model 
equation is a non-linear integral equation, although, for 
several devices, the non-linear imaging equation can 
be reliably approximated by a linear model where the 
integral kernel encodes the impulse response of the 
instrument. Such linearization can be either performed 
through a precise technological realization, like in MRI, 
where acquisition is designed in such a way that the 
data are just the Fourier Transform of the object to be 
imaged; or obtained mathematically, by applying a sort 
of perturbation theory to the non-linear equation, like 
in diffraction tomography whose model comes from 
the linearization of the scattering equation.

The second step toward image reconstruction is 
given by the formulation of computational methods 
for the reduction of the model equation. In the case of 
linear ill-posed inverse problems, a well-established 
regularization theory exists which attenuates the nu-
merical instability related to ill-posedness maintaining 
the biological reliability of the reconstructed image. 
Regularization theory is at the basis of most linear 
imaging modalities and regularization methods can be 
formulated in both a probabilistic and a deterministic 
setting. Unfortunately an analogously well- established 
theory does not exist in the case of non-linear imaging 
problems which therefore are often addressed by means 
of ‘ad hoc’ techniques. 

Once an image has been reconstructed from the data, 
a third step has to be considered, i.e. the processing of 
the reconstructed images for the extraction and inter-
pretation of their information content. Three different 
problems are typically addressed at this stage:

• Edge detection (Trucco & Verri, 1998). Computer 
vision techniques are applied in order to enhance 
the regions of the image where the luminous 
intensity changes sharply. 

• Image integration (Maintz & Viergever, 1998). In 
the clinical workflow several images of a patient 
are taken with different modalities and geometries. 
These images can be fused in an integrated model 
by recovering changes in their geometry.

• Image segmentation (Acton & Ray, 2007). Partial 
volume effects make the interfaces between the 
different tissues extremely fuzzy, thus complicat-
ing the clinical interpretation of the restored im-
ages. An automatic procedure for the partitioning 
of the image in homogeneous pixel sets and for 
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